Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(12): e32950, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38984308

ABSTRACT

The world is facing a major challenge on ways to manage the waste synthetic materials that are potentially polluting the environment. So, by 2040 it is estimated from the total synthetic textile products that will be produced, the accumulated synthetic textile waste will be more than 73.77 %, if recycling of waste may not be managed by novel technology in different sectors. Hence, this is a great challenge coming to the world if it is not effectively recycled mainly to be used in the construction sector which covers a broad area. However, detailed critical review is needed to gather different authors result on waste synthetic fiber effectively utilized in construction materials like in a concrete. So, the present study reviewed, the effects of waste synthetic fibers specifically, which are covering many numbers of synthetic materials; polyester, nylon, and polyethylene replacement on the physical, mechanical, durability, and microstructural properties of concrete. As the review of most researchers indicates, reinforcing the waste synthetic fibers in the concrete by 0.1-1% to the weight of cement reduces workability, improves compressive, flexural, splitting tensile strength, and enhances durability. Specifically, adding around 0.5 % doses to the volume of the concrete makes good resistance to water absorption, chloride ion penetration, acidic attack, elevated temperature resistance below 600°C, and lessen concrete content hence, cost effective compared to the control concrete mixture. Besides these, the employment of waste synthetic fibers makes dense microstructure, consequently minimizes the crack occurrence and propagation.

2.
Food Sci Nutr ; 12(2): 952-970, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38370039

ABSTRACT

Postharvest losses (PHLs) of biomaterials, such as vegetables and fruits, significantly impact food security and economic stability in developing nations. In Tanzania, PHLs are estimated to range between 30% and 40% for cereal crops and even higher for perishable crops such as fruits and vegetables. Open-sun drying (OSD) is the most extensively employed method because of its affordability and simplicity. However, OSD has several drawbacks, including difficulties in managing drying parameters, long drying times owing to adverse weather, and product contamination. The solar-assisted heat pump dryer (SAHPD) is a technology designed as an alternative solution for drying biomaterials and reducing PHL. A limited number of SAHPDs have been constructed in developing nations. Most of the works have concentrated on the performance analysis of the systems. This neglects the techno-economic assessment, which is important to provide both a quantitative and qualitative understanding of the financial viability of the technology. The present study therefore investigates the techno-economic analysis of a novel SAHPD for drying agricultural products, particularly vegetables and fruits. To determine whether the SAHPD technology is technically and economically viable, tomatoes and carrots were dried and analyzed to determine their thermal and economic performance. The results show that the initial moisture contents of tomatoes (Lycopersicum esculentum) and carrots (Daucus carota) were reduced from 93% and 88% to 10% in 11 and 12 h, respectively. The coefficient of performance (COP), drying time (DT), specific moisture extraction ration (SMER) and thermal efficiency (ηT) were found to be 3.4, 2.3 kg/h, 1.33 kg/kWh and 54.0%, respectively. The economic analysis was assessed using the annualized cost, lifecycle savings, and payback period for the dryer's life span of 15 years. The initial investment of the SAHPD was $5221.8 and the annualized cost was $1076.5. The cumulative present worth for 15 years was found to be $23,828.8 and $27,553.1 for tomatoes and carrots, respectively. The payback period for tomatoes was found to be 3 years, whereas for carrots it was 2.6 years. Based on thermal and economic performance assessment results, the developed SAHPD is technically and economically viable to be considered for further investments.

3.
ACS Omega ; 8(45): 43304-43317, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38024705

ABSTRACT

Passive solar dryers play a crucial role in reducing postharvest losses in fruits and vegetables, especially in regions like sub-Saharan Africa with low electrification rates and limited financial resources. However, the intermittent nature of solar energy presents a significant challenge for these dryers. Passive solar dryers integrated with thermal energy storage (TES) can reduce intermittence and improve the drying efficiency. Currently, phase change materials (PCMs) are popular heat storage materials in dryers, and paraffin wax dominates. The main problem with the use of PCMs is that it is necessary to closely constrain the temperature range of the process during charging and discharging. This can be a difficult condition to meet in simple solar dryers due to the variable availability of solar radiation. Instead, solid-phase materials, such as sand and rocks, are often used. Soapstone is one of the natural rocks with good thermal properties, but it has yet to be used as a TES material in solar dryers for drying agricultural products. Therefore, the main objective of the present study was to develop a novel solar dryer integrated with soapstone as a TES material and evaluate its performance. The proximate analysis to examine the quality of dried products using the developed technology was also carried out. The comparative experiments for the developed dryer were conducted in two modes: dryer with TES materials and without TES materials, and the results were compared with open sun drying (OSD) by drying 50 kg of fresh pineapple and carrot at different times. The drying times for pineapples in the dryer with TES, without TES, and OSD were 13, 24, and 52 h, respectively. However, the drying times for carrots in the dryer with TES, without TES, and OSD were 12, 23, and 50 h, respectively. Notably, the dryer integrated with TES materials could supply heat for around 3-4 h after sunset. The thermal efficiency of the dryer, collector efficiency, and storage efficiency of TES materials were calculated and found to be 45, 43, and 74.5%, respectively. Proximate analysis indicated that the dryer integrated with TES materials effectively maintained the quality of the dried products compared to OSD. Solar dryer integrated with soapstone showed great promise as sustainable and efficient solutions for reducing postharvest losses and enhancing food security in resource-constrained regions like sub-Saharan Africa.

4.
Heliyon ; 9(7): e17924, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37483707

ABSTRACT

Ordinary Portland cement is the highest produced cement type in the world, however its production is high energy consumption means expensive, huge natural resource consumptive, and creating high environmental pollution. Hence many researchers studied to reduce the effect of ordinary Portland cement by substituting artificial and natural supplementary cementitious materials (SCMs) commonly in a concrete/mortar mixture. However, the comprehensive effect of different SCMs on various properties of cement composite materials are not well known. So the present study sought to review the effect of different natural and artificial SCMs on the durability and mechanical properties of cement composites, especially due to their doses, types, chemical composition, and physical properties. Hence the review shows that many SCMs used by literatures from different places satisfy ASTM replacement standard based on their chemical compositions. Also, the review indicated as adding 5-20% of different SCMs positively affect mechanical properties, durability, and microstructures of the cement composite materials, specifically as most researchers found isolately adding of 15% SCMs such as bentonite, kaolin, and biomass, 20% addition of volcanic ash and 10% employment of fly ash, silica fume, and zeolite to the cement composites achieves the most optimum compressive and split tensile strength. These observations reveal that most natural pozzolana can more replace cement to give optimum strength, hence can more reduce energy consumption, production cost, and environmental pollution comes due to cement production. Furthermore, most researchers found employing different SCMs generally improves durability, however there is a limited study on the effect of silica fume on water absorption and acidic attack resistance of cementitious materials. Therefore, it is recommended that future research should also focus more to know the effect of silica fume on the durability of cement composites.

5.
Environ Sci Pollut Res Int ; 30(34): 83004-83023, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37340157

ABSTRACT

Three brands of NPK fertilizers that contain variable concentrations of natural radioactivity are commonly used in tobacco plantations in Kenya, Tanzania, and Uganda. Tobacco plants are known for hyper-accumulation of natural radionuclides, particularly 238U. This study investigated if the elevated radioactivity in phosphate fertilizers could enhance radioactivity in soils and tobacco plant leaves. The 232Th, 238U, and 40K radionuclide levels in NPK-fertilized soils and tobacco leaves were measured using gamma-ray spectroscopy. The research included a one-year reference experiment with tobacco growing in plots, a ten-year semi-controlled experiment in well-managed tobacco farms, and a field survey of radioactivity in soils and tobacco leaves at three traditional tobacco fields in Migori (Kenya), Urambo (Tanzania), and Kanungu (Uganda). The findings demonstrated that soils and tobacco leaves exposed to NPK fertilizers with increased radioactivity had activity concentrations of 232Th, 238U, and 40K that were considerably higher (at all sites) than in the control samples (with no use of NPK fertilizers). As the continued application of NPK fertilizers raises concentrations of 232Th, 238U, and 40K in agricultural soils, the study assessed radiological risks for humans from exposure to agricultural soils enriched with phosphate fertilizers, and it was found to be below the exposure limit of 1 mSvy-1 suggested by the International Commission on Radiological Protection (ICRP). However, tobacco consumers, both by snuffing and smoking, may face significant radiological risks, as the snuffing and smoking resulted in effective doses that were 2.41 to 6.53 and 1.14 to 2.45 times greater than the average yearly dose that the general public receives from inhalation of natural radionuclides (United Nations Scientific Committee on Atomic Radiations estimates). Furthermore, the results indicate that the lifetime excess cancer risk for tobacco snuffers and smokers ranged from 5 × 10-5 to 24.48 × 10-3 and 2.0 × 10-5 to 9.18 × 10-3, respectively. The influence of phosphorus-derived fertilizer containing relatively high natural radioactivity, potential human radiation exposure, and radiological risk due to gamma radionuclides is estimated and discussed. The results reveal that applying phosphate fertilizers enhances natural radioactivity in soil and is subsequently influenced by soil to tobacco plant uptake. Therefore, the study recommends that countries use fertilizers with lower radionuclide content to conserve soil quality and reduce gamma-emitting radionuclides in tobacco plants.


Subject(s)
Phosphates , Radioactivity , Humans , Phosphates/chemistry , Soil/chemistry , Fertilizers/analysis , Nicotiana , Kenya , Tanzania , Uganda , Radioisotopes/analysis
6.
ACS Omega ; 8(21): 18554-18565, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37273624

ABSTRACT

The intermittence of solar energy resource in concentrated solar power (CSP) generation and solar drying applications can be mitigated by employing thermal energy storage materials. Natural rocks are well recommended thermal energy storage materials as they are efficient for CSP generation. This study explores the potential of soapstone rock and also the influence of the sites' geo-tectonic setting to soapstone and granite rocks as thermal energy storage materials. Experimental characterization was done to investigate the thermo-chemical properties (thermal stability (TGA), crystalline phases (XRD), petrographic imaging and chemical composition (XRF), and high temperature test); the thermo-physical properties (density, porosity, specific and thermal capacity (DSC), thermal diffusivity, and conductivities (LFA)); and the thermo-mechanical properties (Young's modulus) of the rocks. Consequently, the rock with the most desired properties for thermal energy storage was the soapstone rock from the Craton geo-tectonic setting and it had a Young's modulus of 135 GPa at room temperature. At solar drying and CSP temperatures it had thermal capacities of 3.28 MJ/(m3·K) and 4.65 MJ/(m3·K); densities of 2.785 g/cm3 and 2.77 g/cm3; and conductivities of 2.56 W/(m·K) and 2.43 W/(m·K) respectively, and had weight loss of 0.75% at 900 °C. At high temperatures, only granite from Craton had visible cracks while the other 3 rocks did not show visible signs of fracture. Conclusively, soapstone and granite from Craton in the Dodoma region and Usagaran in the Iringa geo-tectonic settings exhibit significant differences in most thermo-properties.

7.
Environ Sci Pollut Res Int ; 30(12): 33898-33906, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36496520

ABSTRACT

Phosphate rock, pre-concentrated phosphate ore, is the primary raw material for the production of mineral phosphate fertilizer. Phosphate rock is among the fifth most mined materials on earth, and it is also mined and processed to fertilizers in East Africa. Phosphate ore can contain relevant heavy metal impurities such as toxic cadmium and radiotoxic uranium. Prolonged use of phosphate rock powder as a fertilizer and application of mineral fertilizers derived from phosphate rock on agricultural soils can lead to an accumulation of heavy metals that can then pose an environmental risk. This work assesses the uranium concentrations in four major phosphate rocks originating from East Africa and four mineral phosphate fertilizers commonly used in the region. The concentration measurements were performed using energy-dispersive X-ray fluorescence spectrometry. The results showed that the uranium concentration in phosphate rock ranged from as low as 10.7 mg kg-1 (Mrima Hill deposit, Kenya) to as high as 631.6 mg kg-1 (Matongo deposit, Burundi), while the concentrations in phosphate fertilizers ranged from 107.9 for an imported fertilizer to 281.0 mg kg-1 for a local fertilizer produced from Minjingu phosphate rock in Tanzania. In this context, it is noteworthy that the naturally occurring concentration of uranium in the earth crust is between 1.4 and 2.7 mg kg-1 and uranium mines in Namibia commercially process ores with uranium concentrations as low as 100-400 mg kg-1. This study thus confirms that East African phosphate rock, and as a result the phosphate fertilizer produced from it can contain relatively high uranium concentrations. Options to recover this uranium are discussed, and it is recommended that public-private partnerships are established that could develop economically competitive technologies to recover uranium during phosphate rock processing at the deposits with the highest uranium concentrations.


Subject(s)
Phosphates , Uranium , Phosphates/analysis , Soil/chemistry , Uranium/analysis , Fertilizers/analysis , Minerals , Tanzania
8.
ACS Omega ; 7(42): 37133-37141, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36312339

ABSTRACT

Rheological and physicochemical characteristics of edible oils used for biodiesel production are well established; nonetheless, the rheological and physicochemical characteristics of nonedible oils are yet to be established. The present study therefore focuses on rheological and physicochemical characterization of nonedible vegetable oils that can be used as biodiesel feedstock. The selected vegetable oils studied include cashew nut shell liquid (CNSL), castor oil (CO), Croton megalocarpus oil (CMO), Podocarpus usambarensis oil (PUO), and Thevetia peruviana oil (TPO). Physicochemical parameters analyzed were free fatty acids, acid value, saponification value, peroxide value, iodine value, specific gravity, and moisture content using methods by the Association of Official Analytical Chemists (AOAC). Rheological properties were analyzed using a VT-550 Thermo Haake Viscotester operated by the Rheowin 3 Job Manager software. The preset parameters in the Viscotester were shear rate and temperature. The shear rate increased uniformly from 5 to 100 s-1 at the temperature range of 30-60 °C. The experimental data were fitted into rheological models of Newton, Bingham, Ostwald-de Waele (power-law), and Herschel-Bulkley using Rheowin 3 Data Manager. The oil yield was 29-65%, highlighting the feedstock's potential for commercial biodiesel production. At a constant temperature, all oil samples exhibited a Newtonian flow behavior. In contrast to edible oils, nonedible oils exhibited high shear stress, emphasizing the reconstruction of new appropriate designs of production systems. The rheological models appropriate to represent the flow behavior of the samples were the Newton and Ostwald-de Waele models, with a fit of R 2 = 0.990-1.000.

9.
ACS Omega ; 6(19): 12480-12499, 2021 May 18.
Article in English | MEDLINE | ID: mdl-34056398

ABSTRACT

In this study, rice husk biomass was gasified under sub- and supercritical water conditions in an autoclave reactor. The effect of temperature (350-500 °C), residence time (30-120 min), and feed concentration (3-10 wt %) was experimentally studied using the response surface methodology in relation to the yield of gasification products. The quadratic models have been suggested for both responses. Based on the models, the quantitative relationship between various operational conditions and the responses will reliably forecast the experimental outcomes. The findings revealed that higher temperatures, longer residence times, and lower feed concentrations favored high gas yields. The lowest tar yield obtained was 2.98 wt %, while the highest gasification efficiency and gas volume attained were 64.27% and 423 mL/g, respectively. The ANOVA test showed that the order of the effects of the factors on all responses except gravimetric tar yield follows temperature > feed concentration > residence time. The gravimetric tar yield followed a different trend: temperature > residence time > feed concentration. The results revealed that SCW gasification could provide an effective mechanism for transforming the energy content of RH into a substantial fuel product.

10.
J Anal Methods Chem ; 2021: 8837315, 2021.
Article in English | MEDLINE | ID: mdl-33623722

ABSTRACT

Increased demand for monitoring and identification of novel and unknown fluorinated compounds (FCs) has demonstrated the need of sensitive fluorine-specific detectors for unknown FCs in both biological and environmental matrices. Inductively coupled plasma mass spectrometry (ICP-MS) is a promising technique for analysis of FCs and has been rated as the most powerful tool in analytical chemistry. However, direct determination of fluorine using this technique is challenged by high ionization potential of fluorine together with spectral and nonspectral interferences which affect the quality of results. To enhance the quality of results, several studies have reported modifications of a conventional ICP-MS analysis procedure on sample preparation, introduction, analysis, and instrument optimization. Therefore, the focus of this study is to discuss different ICP-MS optimizations and future trends towards the effective analysis of FCs using ICP-MS.

SELECTION OF CITATIONS
SEARCH DETAIL
...