Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Nutr ; 12(2): 952-970, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38370039

ABSTRACT

Postharvest losses (PHLs) of biomaterials, such as vegetables and fruits, significantly impact food security and economic stability in developing nations. In Tanzania, PHLs are estimated to range between 30% and 40% for cereal crops and even higher for perishable crops such as fruits and vegetables. Open-sun drying (OSD) is the most extensively employed method because of its affordability and simplicity. However, OSD has several drawbacks, including difficulties in managing drying parameters, long drying times owing to adverse weather, and product contamination. The solar-assisted heat pump dryer (SAHPD) is a technology designed as an alternative solution for drying biomaterials and reducing PHL. A limited number of SAHPDs have been constructed in developing nations. Most of the works have concentrated on the performance analysis of the systems. This neglects the techno-economic assessment, which is important to provide both a quantitative and qualitative understanding of the financial viability of the technology. The present study therefore investigates the techno-economic analysis of a novel SAHPD for drying agricultural products, particularly vegetables and fruits. To determine whether the SAHPD technology is technically and economically viable, tomatoes and carrots were dried and analyzed to determine their thermal and economic performance. The results show that the initial moisture contents of tomatoes (Lycopersicum esculentum) and carrots (Daucus carota) were reduced from 93% and 88% to 10% in 11 and 12 h, respectively. The coefficient of performance (COP), drying time (DT), specific moisture extraction ration (SMER) and thermal efficiency (ηT) were found to be 3.4, 2.3 kg/h, 1.33 kg/kWh and 54.0%, respectively. The economic analysis was assessed using the annualized cost, lifecycle savings, and payback period for the dryer's life span of 15 years. The initial investment of the SAHPD was $5221.8 and the annualized cost was $1076.5. The cumulative present worth for 15 years was found to be $23,828.8 and $27,553.1 for tomatoes and carrots, respectively. The payback period for tomatoes was found to be 3 years, whereas for carrots it was 2.6 years. Based on thermal and economic performance assessment results, the developed SAHPD is technically and economically viable to be considered for further investments.

2.
Environ Sci Pollut Res Int ; 30(34): 83004-83023, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37340157

ABSTRACT

Three brands of NPK fertilizers that contain variable concentrations of natural radioactivity are commonly used in tobacco plantations in Kenya, Tanzania, and Uganda. Tobacco plants are known for hyper-accumulation of natural radionuclides, particularly 238U. This study investigated if the elevated radioactivity in phosphate fertilizers could enhance radioactivity in soils and tobacco plant leaves. The 232Th, 238U, and 40K radionuclide levels in NPK-fertilized soils and tobacco leaves were measured using gamma-ray spectroscopy. The research included a one-year reference experiment with tobacco growing in plots, a ten-year semi-controlled experiment in well-managed tobacco farms, and a field survey of radioactivity in soils and tobacco leaves at three traditional tobacco fields in Migori (Kenya), Urambo (Tanzania), and Kanungu (Uganda). The findings demonstrated that soils and tobacco leaves exposed to NPK fertilizers with increased radioactivity had activity concentrations of 232Th, 238U, and 40K that were considerably higher (at all sites) than in the control samples (with no use of NPK fertilizers). As the continued application of NPK fertilizers raises concentrations of 232Th, 238U, and 40K in agricultural soils, the study assessed radiological risks for humans from exposure to agricultural soils enriched with phosphate fertilizers, and it was found to be below the exposure limit of 1 mSvy-1 suggested by the International Commission on Radiological Protection (ICRP). However, tobacco consumers, both by snuffing and smoking, may face significant radiological risks, as the snuffing and smoking resulted in effective doses that were 2.41 to 6.53 and 1.14 to 2.45 times greater than the average yearly dose that the general public receives from inhalation of natural radionuclides (United Nations Scientific Committee on Atomic Radiations estimates). Furthermore, the results indicate that the lifetime excess cancer risk for tobacco snuffers and smokers ranged from 5 × 10-5 to 24.48 × 10-3 and 2.0 × 10-5 to 9.18 × 10-3, respectively. The influence of phosphorus-derived fertilizer containing relatively high natural radioactivity, potential human radiation exposure, and radiological risk due to gamma radionuclides is estimated and discussed. The results reveal that applying phosphate fertilizers enhances natural radioactivity in soil and is subsequently influenced by soil to tobacco plant uptake. Therefore, the study recommends that countries use fertilizers with lower radionuclide content to conserve soil quality and reduce gamma-emitting radionuclides in tobacco plants.


Subject(s)
Phosphates , Radioactivity , Humans , Phosphates/chemistry , Soil/chemistry , Fertilizers/analysis , Nicotiana , Kenya , Tanzania , Uganda , Radioisotopes/analysis
3.
Environ Sci Pollut Res Int ; 30(12): 33898-33906, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36496520

ABSTRACT

Phosphate rock, pre-concentrated phosphate ore, is the primary raw material for the production of mineral phosphate fertilizer. Phosphate rock is among the fifth most mined materials on earth, and it is also mined and processed to fertilizers in East Africa. Phosphate ore can contain relevant heavy metal impurities such as toxic cadmium and radiotoxic uranium. Prolonged use of phosphate rock powder as a fertilizer and application of mineral fertilizers derived from phosphate rock on agricultural soils can lead to an accumulation of heavy metals that can then pose an environmental risk. This work assesses the uranium concentrations in four major phosphate rocks originating from East Africa and four mineral phosphate fertilizers commonly used in the region. The concentration measurements were performed using energy-dispersive X-ray fluorescence spectrometry. The results showed that the uranium concentration in phosphate rock ranged from as low as 10.7 mg kg-1 (Mrima Hill deposit, Kenya) to as high as 631.6 mg kg-1 (Matongo deposit, Burundi), while the concentrations in phosphate fertilizers ranged from 107.9 for an imported fertilizer to 281.0 mg kg-1 for a local fertilizer produced from Minjingu phosphate rock in Tanzania. In this context, it is noteworthy that the naturally occurring concentration of uranium in the earth crust is between 1.4 and 2.7 mg kg-1 and uranium mines in Namibia commercially process ores with uranium concentrations as low as 100-400 mg kg-1. This study thus confirms that East African phosphate rock, and as a result the phosphate fertilizer produced from it can contain relatively high uranium concentrations. Options to recover this uranium are discussed, and it is recommended that public-private partnerships are established that could develop economically competitive technologies to recover uranium during phosphate rock processing at the deposits with the highest uranium concentrations.


Subject(s)
Phosphates , Uranium , Phosphates/analysis , Soil/chemistry , Uranium/analysis , Fertilizers/analysis , Minerals , Tanzania
SELECTION OF CITATIONS
SEARCH DETAIL
...