Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 121(16): 163901, 2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30387643

ABSTRACT

Topological photonics has emerged recently as a smart approach for realizing robust optical circuitry, and the study of nonlinear effects is expected to open the door for tunability of photonic topological states. Here we realize experimentally nonlinearity-induced spectral tuning of electromagnetic topological edge states in arrays of coupled nonlinear resonators in the pump-probe regime. When nonlinearity is weak, we observe that the frequencies of the resonators exhibit spectral shifts concentrated mainly at the edge mode and affecting only weakly the bulk modes. For a strong pumping, we describe several scenarios of the transformation of the edge states and their hybridization with bulk modes, and also predict a parametrically driven transition from topological stationary to unstable dynamic regimes.

2.
Nano Lett ; 18(1): 535-539, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29244507

ABSTRACT

Achieving efficient localization of white light at the nanoscale is a major challenge due to the diffraction limit, and nanoscale emitters generating light with a broadband spectrum require complicated engineering. Here we suggest a simple, yet highly efficient, nanoscale white-light source based on a hybrid Si/Au nanoparticle with ultrabroadband (1.3-3.4 eV) spectral characteristics. We incorporate this novel source into a scanning-probe microscope and observe broadband spectrum of photoluminescence that allows fast mapping of local optical response of advanced nanophotonic structures with submicron resolution, thus realizing ultrabroadband near-field nanospectroscopy.

3.
Sci Rep ; 4: 4484, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24670919

ABSTRACT

Understanding the impact of order and disorder is of fundamental importance to perceive and to appreciate the functionality of modern photonic metasurfaces. Metasurfaces with disordered and amorphous inner arrangements promise to mitigate problems that arise for their counterparts with strictly periodic lattices of elementary unit cells such as, e.g., spatial dispersion, and allows the use of fabrication techniques that are suitable for large scale and cheap fabrication of metasurfaces. In this study, we analytically, numerically and experimentally investigate metasurfaces with different lattice arrangements and uncover the influence of lattice disorder on their electromagnetic properties. The considered metasurfaces are composed of metal-dielectric-metal elements that sustain both electric and magnetic resonances. Emphasis is placed on understanding the effect of the transition of the lattice symmetry from a periodic to an amorphous state and on studying oblique illumination. For this scenario, we develop a powerful analytical model that yields, for the first time, an adequate description of the scattering properties of amorphous metasurfaces, paving the way for their integration into future applications.

4.
Opt Lett ; 38(22): 4853-6, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24322149

ABSTRACT

We propose and theoretically verify an efficient mechanism of broadband coupling between incident light and on-chip dielectric slot waveguide by employing a tapered plasmonic nanoantenna. The nanoantenna receives free space radiation and couples it to a dielectric slot waveguide with the efficiency of up to 20% in a broad spectral range, having a small footprint as compared with the currently used narrowband dielectric grating couplers. We argue that the frequency selective properties of such nanoantennas also allow for using them as ultrasmall on-chip multiplexer/demultiplexer devices.


Subject(s)
Nanotechnology/instrumentation , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Transducers , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
5.
Phys Rev Lett ; 110(17): 170407, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23679692

ABSTRACT

We predict the existence of novel spatially localized states of exciton-polariton Bose-Einstein condensates in semiconductor microcavities with fabricated periodic in-plane potentials. Our theory shows that, under the conditions of continuous nonresonant pumping, localization is observed for a wide range of optical pump parameters due to effective potentials self-induced by the polariton flows in the spatially periodic system. We reveal that the self-localization of exciton-polaritons in the lattice may occur both in the gaps and bands of the single-particle linear spectrum, and is dominated by the effects of gain and dissipation rather than the structured potential, in sharp contrast to the conservative condensates of ultracold alkali atoms.

6.
Opt Lett ; 38(1): 79-81, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23282844

ABSTRACT

We theoretically study the cascaded four-wave mixing (FWM) in broadband tapered plasmonic nanoantennas. In comparison with nonlinear bulk medium they demonstrate a 300-fold increase in nonlinear frequency conversion detected in the main lobe of the nanoantenna far-field pattern. This is achieved by tuning the elements of the nanoantenna to resonance frequencies involved in the FWM interaction. Our findings have a potentially broad application in ultrafast nonlinear spectroscopy, sensing, on-chip optical frequency conversion, nonlinear optical metamaterials, and photon sources.

7.
Opt Express ; 20(22): 24701-7, 2012 Oct 22.
Article in English | MEDLINE | ID: mdl-23187233

ABSTRACT

We investigate a power tunable junction formed by two interacting spatial solitons self-trapped in nematic liquid crystals. By launching a counter-propagating copolarized probe we assess the guided-wave behavior induced by the solitons and demonstrate a novel all-optical switch. Varying soliton power the probe gets trapped into one or two or three guided-waves by the soliton-induced index perturbation, an effect supported by the nonlocal nonlinearity.

8.
Sci Rep ; 2: 562, 2012.
Article in English | MEDLINE | ID: mdl-22872807

ABSTRACT

Quantum entanglement became essential in understanding the non-locality of quantum mechanics. In optics, this non-locality can be demonstrated on impressively large length scales, as photons travel with the speed of light and interact only weakly with their environment. Spontaneous parametric down-conversion (SPDC) in nonlinear crystals provides an efficient source for entangled photon pairs, so-called biphotons. However, SPDC can also be implemented in nonlinear arrays of evanescently coupled waveguides which allows the generation and the investigation of correlated quantum walks of such biphotons in an integrated device. Here, we analytically and experimentally demonstrate that the biphoton degrees of freedom are entailed in an additional dimension, therefore the SPDC and the subsequent quantum random walk in one-dimensional arrays can be simulated through classical optical beam propagation in a two-dimensional photonic lattice. Thereby, the output intensity images directly represent the biphoton correlations and exhibit a clear violation of a Bell-like inequality.

9.
Opt Express ; 18(5): 4012-22, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20389416

ABSTRACT

We study theoretically and numerically the second harmonic generation in a nonlinear crystal with random distribution of ferroelectric domains. We show that the specific features of disordered domain structure greatly affect the emission pattern of the generated harmonics. This phenomena can be used to characterize the degree of disorder in nonlinear photonic structures.

10.
Opt Express ; 17(22): 20117-23, 2009 Oct 26.
Article in English | MEDLINE | ID: mdl-19997235

ABSTRACT

We study parametric frequency conversion in quadratic nonlinear media with disordered ferroelectric domains. We demonstrate that disorder allows realizing broadband third-harmonic generation via cascading of two second-order quasi-phase matched nonlinear processes. We analyze both spatial and polarization properties of the emitted radiation and find the results in agreement with our theoretical predictions.


Subject(s)
Light , Manufactured Materials , Models, Theoretical , Nonlinear Dynamics , Refractometry/methods , Computer Simulation , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...