Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioconjug Chem ; 27(5): 1293-304, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27074387

ABSTRACT

We have synthesized and characterized a novel phosphorothioate CpG oligodeoxynucleotide (CpG ODN)-Ficoll conjugated nanoparticulate adjuvant, termed DV230-Ficoll. This adjuvant was constructed from an amine-functionalized-Ficoll, a heterobifunctional linker (succinimidyl-[(N-maleimidopropionamido)-hexaethylene glycol] ester) and the CpG-ODN DV230. Herein, we describe the evaluation of the purity and reactivity of linkers of different lengths for CpG-ODN-Ficoll conjugation, optimization of linker coupling, and conjugation of thiol-functionalized CpG to maleimide-functionalized Ficoll and process scale-up. Physicochemical characterization of independently produced lots of DV230-Ficoll reveal a bioconjugate with a particle size of approximately 50 nm and covalent attachment of more than 100 molecules of CpG per Ficoll. Solutions of purified DV230-Ficoll were stable for at least 12 months at frozen and refrigerated temperatures and stability was further enhanced in lyophilized form. Compared to nonconjugated monomeric DV230, the DV230-Ficoll conjugate demonstrated improved in vitro potency for induction of IFN-α from human peripheral blood mononuclear cells and induced higher titer neutralizing antibody responses against coadministered anthrax recombinant protective antigen in mice. The processes described here establish a reproducible and robust process for the synthesis of a novel, size-controlled, and stable CpG-ODN nanoparticle adjuvant suitable for manufacture and use in vaccines.


Subject(s)
Adjuvants, Immunologic/chemistry , Antigens, Bacterial/immunology , Bacterial Toxins/immunology , Drug Design , Ficoll/chemistry , Nanoparticles/chemistry , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/immunology , Animals , Drug Stability , Humans , Maleimides/chemistry , Methylation , Mice , Polyethylene Glycols/chemistry
2.
J Immunol ; 196(1): 284-97, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26608924

ABSTRACT

Nanoparticulate delivery systems for vaccine adjuvants, designed to enhance targeting of secondary lymphoid organs and activation of APCs, have shown substantial promise for enhanced immunopotentiation. We investigated the adjuvant activity of synthetic oligonucleotides containing CpG-rich motifs linked to the sucrose polymer Ficoll, forming soluble 50-nm particles (DV230-Ficoll), each containing >100 molecules of the TLR9 ligand, DV230. DV230-Ficoll was evaluated as an adjuvant for a candidate vaccine for anthrax using recombinant protective Ag (rPA) from Bacillus anthracis. A single immunization with rPA plus DV230-Ficoll induced 10-fold higher titers of toxin-neutralizing Abs in cynomolgus monkeys at 2 wk compared with animals immunized with equivalent amounts of monomeric DV230. Monkeys immunized either once or twice with rPA plus DV230-Ficoll were completely protected from challenge with 200 LD50 aerosolized anthrax spores. In mice, DV230-Ficoll was more potent than DV230 for the induction of innate immune responses at the injection site and draining lymph nodes. DV230-Ficoll was preferentially colocalized with rPA in key APC populations and induced greater maturation marker expression (CD69 and CD86) on these cells and stronger germinal center B and T cell responses, relative to DV230. DV230-Ficoll was also preferentially retained at the injection site and draining lymph nodes and produced fewer systemic inflammatory responses. These findings support the development of DV230-Ficoll as an adjuvant platform, particularly for vaccines such as for anthrax, for which rapid induction of protective immunity and memory with a single injection is very important.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Anthrax Vaccines/immunology , Anthrax/prevention & control , Antigens, Bacterial/immunology , Bacterial Toxins/immunology , Oligonucleotides/immunology , Respiratory Tract Infections/prevention & control , Animals , Anthrax/immunology , Anthrax/microbiology , Anthrax Vaccines/administration & dosage , Antigens, Bacterial/genetics , Antigens, CD/biosynthesis , Antigens, Differentiation, T-Lymphocyte/biosynthesis , B-Lymphocytes/immunology , B7-2 Antigen/biosynthesis , Bacillus anthracis/immunology , Bacillus anthracis/pathogenicity , Bacterial Toxins/genetics , Dendritic Cells/immunology , Ficoll/immunology , GC Rich Sequence/genetics , Lectins, C-Type/biosynthesis , Macaca fascicularis , Macrophages/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanoparticles , Neutrophils/immunology , Oligonucleotides/genetics , Recombinant Proteins/immunology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , T-Lymphocytes/immunology , Vaccination , Vaccines, Synthetic/immunology
3.
Bioconjug Chem ; 18(6): 1869-78, 2007.
Article in English | MEDLINE | ID: mdl-17935288

ABSTRACT

New thiolytically cleavable dithiobenzyl (DTB) urethane-linked conjugates of methoxypoly(ethylene glycol) (mPEG) and a model protein, lysozyme, were prepared and thoroughly characterized. In contrast to our earlier communication [Zalipsky, et al. (1999) Bioconjugate Chem. 10, 703], in the current study we used a more sterically hindered form of para-DTB urethane linkage containing a methyl group on the alpha-carbon to the disulfide moiety. The new reagent for covalent attachment of mPEG-DTB to amino groups of proteins was synthesized via a seven-step process. As a result of PEG conjugation, the lysozyme was shown to completely lose its bacterial cell wall-lysing activity. However, activity was almost fully restored upon cysteine-mediated cleavage of the PEG component. The conjugate decomposition process was monitored by RP-HPLC and by ion spray LC-MS, which showed the formation of the p-mercaptobenzyl urethane-lysozyme intermediate, and ultimately its conversion to the unmodified lysozyme as the sole protein component. Pharmacokinetic evaluation of (125)I-labeled cleavable and noncleavable PEG-lysozyme given intravenously in rats revealed similar clearance patterns; both cleared in a significantly slower manner compared to that of the native protein. However, subcutaneous administration of the same conjugates showed a significantly larger AUC of the cleavable conjugate, indicating that some cleavage of the DTB urethane may have occurred. Although the DTB-linked PEG-lysozyme exhibited almost the same plasma clearance as the noncleavable counterpart, hinting that methyl-DTB linkage might be stable in the bloodstream, SDS-PAGE examination of the conjugate incubated in plasma showed decomposition at least partially mediated by albumin. These results suggest the potential of PEG-DTB-proteins as macromolecular prodrugs capable of generating fully active native proteins under in vivo conditions.


Subject(s)
Benzene/chemistry , Muramidase/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Prodrugs/chemistry , Sulfhydryl Compounds/chemistry , Urethane/chemistry , Animals , Chromatography, High Pressure Liquid , Cross-Linking Reagents/chemistry , Male , Molecular Conformation , Muramidase/pharmacokinetics , Prodrugs/pharmacokinetics , Rats , Rats, Sprague-Dawley , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
4.
J Drug Target ; 15(7-8): 518-30, 2007.
Article in English | MEDLINE | ID: mdl-17671898

ABSTRACT

The antitumor activity of a novel thiolytically cleavable lipid-based prodrug of mitomycin C (MMC) delivered by STEALTH liposomes (SL) was studied in drug resistant human ovarian carcinoma A2780/AD model and compared with free MMC and both free and SL forms of an established anticancer drug--doxorubicin (DOX). It was found that SL-prodrug (SL-pMMC) possessed enhanced antitumor activity when compared with the parent MMC, free DOX, and SL-DOX. An observance of the high antitumor efficiency of SL-pMMC was a result of its preferential accumulation in the tumor by the enhanced permeability and retention (EPR) effect, suppression of multidrug resistance (MDR) associated with P-glycoprotein and MRP drug efflux pumps, activation of caspase-dependent apoptosis signaling pathways and suppression of antiapoptotic cellular defense by increasing the BAX/BCL2 ratio. Consequently, the described SL-pMMC formulations can be considered good candidates for the chemotherapy of multidrug resistant tumors.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Drug Resistance, Neoplasm , Mitomycin/pharmacology , Ovarian Neoplasms/drug therapy , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacokinetics , Apoptosis/drug effects , Caspases/metabolism , Disease Models, Animal , Doxorubicin/pharmacology , Drug Resistance, Multiple , Female , Humans , Liposomes , Mice , Mice, Nude , Mitomycin/administration & dosage , Mitomycin/pharmacokinetics , Permeability , Prodrugs , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...