Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Anal Sci ; 39(5): 653-662, 2023 May.
Article in English | MEDLINE | ID: mdl-36436125

ABSTRACT

A novel, cost-effective platform using a biodegradable sensor and a simple heat control unit was proposed for multi-sample formaldehyde (FA) assay in one run based on pervaporation. The biodegradable sensor was a composite starch gel attached to paper and immobilized with a mixture of color agents of modified 4-amino-3-hydrazino-5-mercapto-1,2,4-triazol (AHMT). The sensor was situated on the cap of a vial that served for pervaporation. Two types of heat control units were specially designed using the concepts of aluminum block and water bath heating. With these two designs, multi-sample assays together with standard calibration could be performed in the same run under the same conditions. An FA solution was placed in the vial of the pervaporation unit. After a heating period, FA vapor would change the color of the sensor to purple due to the reaction between AHMT and FA. As a result, the color intensity was proportional to the FA concentration. The change of the color (green or G intensity) was monitored using a smartphone camera and image processing software. Factors affecting the sensitivity of the assay, pervaporation time, pervaporation temperature, FA solution volume, and humidity, were studied. Under the chosen condition, the developed procedure, with a calibration of G intensity = 7.93[FA] + 198, R2 = 0.98, was applied to analyze real samples of seafood and mushrooms available in local markets in Thailand. As there were 24 pervaporation units in the proposed platform, 5 working standards and 9 samples with duplicates could be included in a 1-run assay either in the laboratory or on-site. The developed assay offers green chemical analysis with a simple, cost-effective approach. This serves the UN-SDGs of #2, #3, #7, #10, and #12.

2.
Molecules ; 27(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36500721

ABSTRACT

Coconut oil as a natural solvent is proposed for green downscaling solvent extractive determination. Determination of Cu(II) using 1,5-Diphenylcarbazide (DPC) was selected as a model for the investigation. Cu(II)-DPC complexes in aqueous solution were transferred into coconut oil phase. The change of the color due to Cu(II)-DPC complexes in coconut oil was followed by using a smartphone and image processing. A single standard concept was used for a series of Cu(II) standard solutions. A downscaling procedure using a 2 mL vial provided a calibration: color intensity = -142 [Cu(II)] + 222, (R2 = 0.98), 10% RSD. Using a well plate, a calibration was: color intensity = 61 [Cu(II)] + 68 (R2 = 0.91), 15% RSD. Both were for the range of 0-1 ppm Cu(II). Application of the developed procedure to water samples was demonstrated. The developed procedures provided a new approach of green chemical analysis.


Subject(s)
Colorimetry , Water , Diphenylcarbazide/chemistry , Coconut Oil , Solvents/analysis , Colorimetry/methods , Copper/chemistry
3.
Molecules ; 27(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36235202

ABSTRACT

We proposed a specially designed sequential injection (SI) amperometric system coupling with a bioreactor for in-line glucose monitoring in cell culture. The system is composed of three main parts which are the bioreactor, SI system, and electrochemical detection unit. The bioreactor accommodates six individual cell culture units which can be operated separately under different conditions. The SI system enables automatic in-line sampling and in-line sample dilution, with a specially designed mixing unit; therefore, it has the benefits of fast analysis time and less contamination risk. The use of 3D-printed microfluidic components, a mixing channel, and a flow cell helped to reduce operational time and sample volume. A disposable screen-printed electrode (SPE), modified with glucose oxidase (GOD), carbon nanotube, and gold nanoparticle, was used for detection. The developed system provided a linear range up to 3.8 mM glucose in cell culture media. In order to work with cell culture in higher glucose media, the in-line sample dilution can be applied. The developed SI system was demonstrated with mouse fibroblast (L929) cell culture. The results show that glucose concentration obtained from the SI system is comparable with that obtained from the conventional colorimetric method. This work can be further developed and applied for in vitro cell-based experiments in biomedical research.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanotubes, Carbon , Animals , Bioreactors , Biosensing Techniques/methods , Blood Glucose , Blood Glucose Self-Monitoring , Cell Culture Techniques , Electrochemistry , Electrodes , Glucose/analysis , Glucose Oxidase , Gold , Mice
4.
Molecules ; 27(7)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35408559

ABSTRACT

A new biodegradable platform-based sensor for formaldehyde assay is proposed. Natural rubber latex was modified to polylactic acid-chloroacetated natural rubber polymer blend sheets. The polymer blend sheet was grafted using a water-based system with amine monomers as a platform, with a spot exhibiting positive polarity for immobilizing with anionic dye (Acid Red 27). The sensor was exposed to formaldehyde. The color intensity of the dye on the sensor spot would decrease. Using a smartphone with image processing (via ImageJ program), the color intensity change (∆B) could be followed. A linear calibration, ∆B intensity = 0.365 [FA] + 6.988, R2 = 0.997, was obtained for 10-150 mM FA with LOD and LOQ at 3 and 10 mM, respectively (linear regression method). The precision was lower than 20% RSD. Application to real seafood samples was demonstrated. The ready-to-use sensor with the proposed method was cost-effective, was portable for on-site analysis, and demonstrated green chemical analysis.


Subject(s)
Rubber , Smartphone , Formaldehyde/analysis , Seafood/analysis , Water
5.
Talanta ; 236: 122848, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34635238

ABSTRACT

Paper-based analytical devices (PADs) with four new designs could be fabricated using commercially available home-based scan-and-cut printer. They serve for miniaturised platforms for chemical analysis. Replication analysis of a sample together with the calibration (using the analyte standards at different concentrations) can be completed in a single run, by utilising smartphone as the detector. Some new approaches for choosing detection zones were suggested. The four proposed PAD designs here were used as models in microliter scale operation to demonstrate the well-known chemistries of colorimetric determinations of iron, phosphate, and hardness using 1,10-phenanthroline and simple aqueous guava leaf extract; molybdate, and EBT-EDTA complexometric titration, respectively, through calibrations: where Blue (B) value = 88.2log [Fe3+] - 80.8, R2 = 0.989; B value = 1.75 [Fe3+] + 0.198, R2 = 0.999; Grey scale (I) value = 1.77 [Fe3+] - 1.22, R2 = 0.997; Red (R) value = 16.1log [PO43-] + 8.95, R2 = 0.999; Hue (H) value = 43.3log [Ca2+] + 233, R2 = 0.994, respectively. For the hardness, using one of the PAD designs, true titration was also possible. Applications of the proposed devices and procedures were demonstrated for real world samples with validation. Additionally, kinetic study of the molybdenum blue for phosphate was demonstrated using one of the PADs.


Subject(s)
Paper , Smartphone , Calibration , Colorimetry , Iron
6.
Molecules ; 26(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34577191

ABSTRACT

A monolithic rod of polyurethane foam-[4-(2-pyridylazo) resorcinol] (PUF-PAR) as a simple chemical sensor for lead assays with smartphone detection and image processing was developed. With readily available simple apparatus such as a plastic cup and a stirrer rod, the monolithic PUF rod was synthesized in a glass tube. The monolithic PUF-PAR rod could be directly loaded by standard/sample solution without sample preparation. A one-shot image in G/B value from a profile plot in ImageJ for a sample with triplicate results via a single standard calibration approach was obtained. A linear single standard calibration was: [G/B value] = -0.038[µg Pb2+] + 2.827, R2 = 0.95 for 10-30 µg Pb2+ with a limit of quantitation (LOQ) of 33 µg L-1. The precision was lower than 15% RSD. The proposed method was tested by an assay for Pb2+ contents in drinking water samples from Bangkok. The results obtained by the proposed method agree with those of ICP-OES and with 100-120% recovery, demonstrating that the method is useful for screening on-site water monitoring.

7.
Plants (Basel) ; 10(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34451569

ABSTRACT

A modern chemical sensor system (M-CSS) was developed for the cost-effective chemical analysis of Thai precision and sustainable agriculture (TPSA), which is suitable in rural Thailand and elsewhere. The aim of this study was to achieve precision and sustainable agriculture (P-SA). The M-CSS functions according to the International Union of Pure and Applied Chemistry (IUPAC) definition and incorporates information and communication technologies (ICTs). The developed chemical sensor in the M-CSS is based on a colorimetric determination by a smart device/smartphone. Additionally, the preparation of soil samples was investigated. Soil samples of optimal conditions were extracted using an acid extractant in the ratio of one to two (extract to soil sample). Then, phosphate-phosphorous and potassium were detected with the M-CSS, which showed an excellent correlation with the standard reference methods. Interestingly, it is noteworthy that the at-site analysis of the developed method could detect a greater nitrate-nitrogen content than that of the standard reference method. The developed cost-effective analysis for the plant macronutrient content in the soil, including nitrate-nitrogen, phosphate-phosphorous, and potassium, was demonstrated for organic vegetable farms at the real P-SA research site in Northern Thailand. The obtained results can guide the management of the application of fertilizers. The proposed M-CSS exhibited the potential to be used for at-site soil macronutrient analysis and represents the starting point of Thai precision and sustainable agriculture (TPSA).

8.
Molecules ; 26(15)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34361553

ABSTRACT

A simple flow injection FlameAAS for lead determination with an alginate-polyurethane composite (ALG-PUC) monolithic in-valve column has been developed. The ALG-PUC monolithic rod was prepared by mixing methylene diphenyl diisocyanate with polyol and sodium alginate with the ratio of 2:1:1 by weight for a 5 min polymerization reaction. It was then put into a column (0.8 cm i.d × 11 cm length) situated in a switching valve for the FI set up. A single standard calibration could be obtained by plotting the loaded µg Pb2+ vs. FI response (absorbances). The loaded µg Pb2+ is calculated: µg Pb2+ = FRload × LT × CPb2+, where the FR load is the flow rate of the loading analyte solution (mL min-1), LT is the loading time (min), and CPb2+ is the Pb2+ concentration (µg mL-1). A linear calibration equation was obtained: FI response (absorbances) = 0.0018 [µg Pb2+] + 0.0032, R2 = 0.9927 for 1-150 µg Pb2+, and RSD of less than 20% was also obtained. Application of the developed procedure has been demonstrated in real samples.

9.
Molecules ; 25(7)2020 Apr 04.
Article in English | MEDLINE | ID: mdl-32260353

ABSTRACT

A mono-segmented sequential injection lab-at-valve (SI-LAV) system for the determination of albumin, glucose, and creatinine, three key biomarkers in diabetes screening and diagnosis, was developed as a single system for multi-analyte analysis. The mono-segmentation technique was employed for in-line dilution, in-line single-standard calibration, and in-line standard addition. This made adjustments to the sample preparation step easy unlike the batch-wise method. The results showed that the system could be used for both fast reaction (albumin) and slow reaction (glucose with enzymatic reaction and creatinine). In the case of slow reaction, the analysis time could be shortened by using the reaction rate obtained with the SI-LAV system. This proposed system is for cost-effective and downscaling analysis, which would be applicable for small hospitals and clinics in remote places with a small number of samples but relatively fast screening would be needed.


Subject(s)
Clinical Laboratory Techniques/instrumentation , Creatinine/analysis , Glucose/analysis , Serum Albumin, Human/analysis , Chemistry Techniques, Analytical/instrumentation , Chemistry Techniques, Analytical/methods , Clinical Laboratory Techniques/methods , Humans
10.
Talanta ; 203: 287-289, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31202340

ABSTRACT

Talanta has been known as one of the top ranking journals in (general) analytical chemistry. Applying a search term "Talanta" in Scopus, using the tool for analysis in there, some characteristics on Talanta were investigated. Tracing back for every 10 year period, by considering the citations relevant to the key words of the published papers, it can be seen that Talanta serves to report the works in the trends of that period. At the beginning period of Talanta, major contributions were from Europe and the USA and less contributions from Asia. After 30 years of Talanta, contributions from Asia, especially from China, have increased. Contributions from more countries around the globe have been increasing.

11.
Talanta ; 181: 1-5, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29426486

ABSTRACT

Noodle based analytical devices are proposed for cost effective green chemical analysis. Two noodle based analytical platforms have been examined. Conditions for flow with laminar behaviors could be established. Detection may be via a webcam camera or a flatbed scanner. Acid-base reactions were chosen as a model study. The assays of acetic acid and sodium hydroxide were investigated. Apart from bromothymol blue, simple aqueous extract of butterfly pea flower was used as a natural reagent. Another model was the assay of copper (Cu2+) which was based on the redox reaction of copper (Cu2+) with iodide to produce tri-iodide forming brown/black product with starch which already exists in the noodle platform. Demonstration to apply the noodle platforms for real samples was made.

SELECTION OF CITATIONS
SEARCH DETAIL
...