Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Biochim Biophys Acta Gen Subj ; 1868(8): 130648, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830559

ABSTRACT

KANK1 was found as a tumor suppressor gene based on frequent deletions in renal cell carcinoma and the inhibitory activity of tumor cell proliferation. Previously, we reported that knockdown of KANK1 induced centrosomal amplification, leading to abnormal cell division, through the hyperactivation of RhoA small GTPase. Here, we investigated the loss of KANK1 function by performing CRISPR/Cas9-based genome editing to knockout the gene. After several rounds of genome editing, however, there were no cell lines with complete loss of KANK1, and the less the wild-type KANK1 dosage, the greater the number of cells with abnormal numbers of centrosomes and rates of cell-doubling and apoptosis, suggesting the involvement of KANK1 haploinsufficiency in centrosome aberrations. The rescue of KANK1-knockdown cells with a KANK1-expressing plasmid restored the rates of cells exhibiting centrosomal amplification to the control level. RNA-sequencing analysis of the cells with reduced dosages of functional KANK1 revealed potential involvement of other cell proliferation-related genes, such as EGR1, MDGA2, and BMP3, which have been reported to show haploinsufficiency when they function. When EGR1 protein expression was reduced by siRNA technology, the number of cells exhibiting centrosomal amplification increased, along with the reduction of KANK1 protein expression, suggesting their functional relationship. Thus, KANK1 haploinsufficiency may contribute to centrosome aberrations through the network of haploinsufficiency-related genes.


Subject(s)
Adaptor Proteins, Signal Transducing , Centrosome , Cytoskeletal Proteins , Haploinsufficiency , Centrosome/metabolism , Humans , Haploinsufficiency/genetics , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Proliferation/genetics , CRISPR-Cas Systems , Gene Editing , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
2.
Genes (Basel) ; 15(2)2024 02 04.
Article in English | MEDLINE | ID: mdl-38397194

ABSTRACT

Sophora flavescens is a medicinal herb distributed widely in Japan and it has been used to treat various diseases and symptoms. To explore its pharmacological use, we examined the estrogenic activity of four prenylated flavonoids, namely kurarinone, kushenols A and I, and sophoraflavanone G, which are characterized by the lavandulyl group at position 8 of ring A, but have variations in the hydroxyl group at positions 3 (ring C), 5 (ring A) and 4' (ring B). These prenylated flavonoids were examined via cell proliferation assays using sulforhodamine B, Western blotting, and RT-PCR, corresponding to cell, protein, and transcription assays, respectively, based on estrogen action mechanisms. All the assays employed here found weak but clear estrogenic activities for the prenylated flavonoids examined. Furthermore, the activities were inhibited by an estrogen receptor antagonist, suggesting that the activities were likely being mediated by the estrogen receptors. However, there were differences in the activity, attributable to the hydroxyl group at position 4', which is absent in kushenol A. While the estrogenic activity of kurarinone and sophoraflavanone G has been reported before, to the best of our knowledge, there are no such reports on kushenols A and I. Therefore, this study represents the first report of their estrogenic activity.


Subject(s)
Plants, Medicinal , Sophora , Sophora flavescens , Flavonoids/pharmacology , Plant Extracts/pharmacology , Estrone
3.
J Nutr Biochem ; 114: 109250, 2023 04.
Article in English | MEDLINE | ID: mdl-36509337

ABSTRACT

Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.


Subject(s)
Flavonoids , Isoflavones , Flavonoids/pharmacology , Flavonoids/chemistry , Anthocyanins/pharmacology , Artificial Intelligence , Estrogens/pharmacology
4.
PLoS One ; 17(8): e0273164, 2022.
Article in English | MEDLINE | ID: mdl-35976950

ABSTRACT

Estrogen action is mediated by various genes, including estrogen-responsive genes (ERGs). ERGs have been used as reporter-genes and markers for gene expression. Gene expression profiling using a set of ERGs has been used to examine statistically reliable transcriptomic assays such as DNA microarray assays and RNA sequencing (RNA-seq). However, the quality of ERGs has not been extensively examined. Here, we obtained a set of 300 ERGs that were newly identified by six sets of RNA-seq data from estrogen-treated and control human breast cancer MCF-7 cells. The ERGs exhibited statistical stability, which was based on the coefficient of variation (CV) analysis, correlation analysis, and examination of the functional association with estrogen action using database searches. A set of the top 30 genes based on CV ranking were further evaluated quantitatively by RT-PCR and qualitatively by a functional analysis using the GO and KEGG databases and by a mechanistic analysis to classify ERα/ß-dependent or ER-independent types of transcriptional regulation. The 30 ERGs were characterized according to (1) the enzymes, such as metabolic enzymes, proteases, and protein kinases, (2) the genes with specific cell functions, such as cell-signaling mediators, tumor-suppressors, and the roles in breast cancer, (3) the association with transcriptional regulation, and (4) estrogen-responsiveness. Therefore, the ERGs identified here represent various cell functions and cell signaling pathways, including estrogen signaling, and thus, may be useful to evaluate estrogenic activity.


Subject(s)
Breast Neoplasms , Gene Expression Regulation, Neoplastic , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Estrogen Receptor alpha/metabolism , Estrogens/metabolism , Estrogens/pharmacology , Estrone , Female , Gene Expression Profiling , Humans , MCF-7 Cells , Transcriptional Regulator ERG/genetics
5.
J Nutr Biochem ; 86: 108486, 2020 12.
Article in English | MEDLINE | ID: mdl-32827666

ABSTRACT

Ginger (Zingiber officinale Roscoe) has been used as a food, spice, supplement and flavoring agent and in traditional medicines due to its beneficial characteristics such as pungency, aroma, nutrients and pharmacological activity. Ginger and ginger extracts were reported to have numerous effects, such as those on diabetes and metabolic syndrome, cholesterol levels and lipid metabolism, and inflammation, revealed by epidemiological studies. To understand the beneficial characteristics of ginger, especially its physiological and pharmacological activities at the molecular level, the biological effects of ginger constituents, such as monoterpenes (cineole, citral, limonene and α/ß-pinenes), sesquiterpenes (ß-elemene, farnesene and zerumbone), phenolics (gingerols, [6]-shogaol, [6]-paradol and zingerone) and diarylheptanoids (curcumin), and the associated signaling pathways are summarized. Ginger constituents are involved in biological activities, such as apoptosis, cell cycle/DNA damage, chromatin/epigenetic regulation, cytoskeletal regulation and adhesion, immunology and inflammation, and neuroscience, and exert their effects through specific signaling pathways associated with cell functions/mechanisms such as autophagy, cellular metabolism, mitogen-activated protein kinase and other signaling, and development/differentiation. Estrogens, such as phytoestrogens, are one of the most important bioactive materials in nature, and the molecular mechanisms of estrogen actions and the assays to detect them have been discussed. The molecular mechanisms of estrogen actions induced by ginger constituents and related applications, such as the chemoprevention of cancers, and the improvement of menopausal syndromes, osteoporosis, endometriosis, prostatic hyperplasia, polycystic ovary syndrome and Alzheimer's disease, were summarized by a comprehensive search of references to understand more about their health benefits and associated health risks.


Subject(s)
Inflammation/drug therapy , Plant Extracts/pharmacology , Signal Transduction , Zingiber officinale/chemistry , Animals , Blood Pressure/drug effects , Cholesterol/metabolism , Cytoskeleton/metabolism , Diabetes Mellitus/drug therapy , Dysmenorrhea/drug therapy , Epigenesis, Genetic/drug effects , Female , Humans , Lipid Metabolism , Metabolic Syndrome/drug therapy , Nausea/drug therapy , Nutritional Physiological Phenomena , Phenol/chemistry
6.
Nutrients ; 11(6)2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31234352

ABSTRACT

Here, the constituents of coffee with estrogenic activity are summarized by a comprehensive literature search, and their mechanisms of action for their physiological effects are discussed at the molecular and cellular levels. The estrogenic activity of coffee constituents, such as acids, caramelized products, carbohydrates, lignin, minerals, nitrogenous compounds, oil (lipids), and others, such as volatile compounds, was first evaluated by activity assays, such as animal tests, cell assay, ligand-binding assay, protein assay, reporter-gene assay, transcription assay, and yeast two-hybrid assay. Second, the health benefits associated with the estrogenic coffee constituents, such as bone protection, cancer treatment/prevention, cardioprotection, neuroprotection, and the improvement of menopausal syndromes, were summarized, including their potential therapeutic/clinical applications. Inconsistent results regarding mixed estrogenic/anti-estrogenic/non-estrogenic or biphasic activity, and unbeneficial effects associated with the constituents, such as endocrine disruption, increase the complexity of the effects of estrogenic coffee constituents. However, as the increase of the knowledge about estrogenic cell signaling, such as the types of specific signaling pathways, selective modulations of cell signaling, signal crosstalk, and intercellular/intracellular networks, pathway-based assessment will become a more realistic means in the future to more reliably evaluate the beneficial applications of estrogenic coffee constituents.


Subject(s)
Coffee , Phytoestrogens/pharmacology , Receptors, Estrogen/drug effects , Animals , Coffee/adverse effects , Coffee/chemistry , Humans , Phytoestrogens/adverse effects , Phytoestrogens/isolation & purification , Receptors, Estrogen/metabolism , Signal Transduction/drug effects
7.
Sci Rep ; 8(1): 16053, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30375506

ABSTRACT

Sparassis crispa (Hanabiratake) is a widely used medicinal mushroom in traditional Chinese medicine because it contains materials with pharmacological activity. Here, we report its 39.0-Mb genome, encoding 13,157 predicted genes, obtained using next-generation sequencing along with RNA-seq mapping data. A phylogenetic analysis by comparison with 25 other fungal genomes revealed that S. crispa diverged from Postia placenta, a brown-rot fungus, 94 million years ago. Several features specific to the genome were found, including the A-mating type locus with the predicted genes for HD1 and HD2 heterodomain transcription factors, the mitochondrial intermediate peptidase (MIP), and the B-mating type locus with seven potential pheromone receptor genes and three potential pheromone precursor genes. To evaluate the benefits of the extract and chemicals from S. crispa, we adopted two approaches: (1) characterization of carbohydrate-active enzyme (CAZyme) genes and ß-glucan synthase genes and the clusters of genes for the synthesis of second metabolites, such as terpenes, indoles and polyketides, and (2) identification of estrogenic activity in its mycelial extract. Two potential ß-glucan synthase genes, ScrFKS1 and ScrFKS2, corresponding to types I and II, respectively, characteristic of Agaricomycetes mushrooms, were newly identified by the search for regions homologous to the reported features of ß-glucan synthase genes; both contained the characteristic transmembrane regions and the regions homologous to the catalytic domain of the yeast ß-glucan synthase gene FKS1. Rapid estrogenic cell-signaling and DNA microarray-based transcriptome analyses revealed the presence of a new category of chemicals with estrogenic activity, silent estrogens, in the extract. The elucidation of the S. crispa genome and its genes will expand the potential of this organism for medicinal and pharmacological purposes.


Subject(s)
Genome, Fungal/genetics , Polyporales/genetics , Transcriptome/genetics , Agaricales , Carbohydrates/genetics , Chromosome Mapping , Estrogens/genetics , Glucosyltransferases/genetics , High-Throughput Nucleotide Sequencing , Oligonucleotide Array Sequence Analysis , Phylogeny , Polyporales/pathogenicity , Signal Transduction , beta-Glucans/metabolism
8.
Eur J Pharmacol ; 815: 405-415, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28970013

ABSTRACT

Terpenes are made of the isoprene unit (C5), and along with their derivatives, terpenoids, they are widely distributed in plants as active ingredients involved in anti-inflammation, anti-carcinogenesis and neuroprotection. Estrogenic terpenes and terpenoids are an important category of phytoestrogens and have been used as traditional medicines. The comprehensive list of estrogenic terpenes and terpenoids includes hemi-, mono-, sesqui-, di-, tri-, tetra- and polyterpenes, their derivatives, and meroterpenes, along with the signaling pathways and cellular functions on which their estrogenicity is exerted. Signaling pathways are further classified as bidirectional or unidirectional, the latter being further divided into two types depending upon the presence of both ligands, or the absence of one or both ligands. Although estrogenic activity of terpenes and terpenoids was evaluated by ligand-binding assays, yeast two-hybrid assays, reporter-gene assays, transcription assays, protein assays, cell assays and animal testing, the mechanism of estrogenic activity is still not fully understood. Applications of estrogenic terpenes and terpenoids are categorized into cancer treatment and prevention, cardioprotection, endocrine toxicity/reproductive dysfunction, food/supplement/traditional medicine, immunology/inflammation, menopausal syndromes and neuroprotection, where their benefits are discussed based on their availability, stability and variations.


Subject(s)
Estrogens/pharmacology , Terpenes/pharmacology , Animals , Estrogens/chemistry , Humans , Signal Transduction/drug effects , Terpenes/chemistry
9.
Am J Chin Med ; 45(7): 1365-1399, 2017.
Article in English | MEDLINE | ID: mdl-28946770

ABSTRACT

Estrogen, a steroid hormone, is associated with several human activities, including environmental, industrial, agricultural, pharmaceutical and medical fields. In this review paper, estrogenic activity associated with traditional Chinese medicines (TCMs) is discussed first by focusing on the assays needed to detect estrogenic activity (animal test, cell assay, ligand-binding assay, protein assay, reporter-gene assay, transcription assay and yeast two-hybrid assay), and then, their sources, the nature of activities (estrogenic or anti-estrogenic, or other types), and pathways/functions, along with the assay used to detect the activity, which is followed by a summary of effective chemicals found in or associated with TCM. Applications of estrogens in TCM are then discussed by a comprehensive search of the literature, which include basic study/pathway analysis, cell functions, diseases/symptoms and medicine/supplements. Discrepancies and conflicting cases about estrogenicity of TCM among assays or between TCM and their effective chemicals, are focused on to enlarge estrogenic potentials of TCM by referring to omic knowledge such as transcriptome, proteome, glycome, chemome, cellome, ligandome, interactome and effectome.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Estrogens/pharmacology , Phytoestrogens/pharmacology , Animals , Proteome , Receptor Cross-Talk , Signal Transduction , Transcriptome
10.
Exp Cell Res ; 353(2): 79-87, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28284839

ABSTRACT

Chromosome instability, frequently found in cancer cells, is caused by a deficiency in cell division, including centrosomal amplification and cytokinesis failure, and can result in abnormal chromosome content or aneuploidy. The small GTPase pathways have been implicated as important processes in cell division. We found that knockdown of a tumor suppressor protein Kank1 increases the number of cells with a micronucleus or bi-/multi-nuclei, which was likely caused by centrosomal amplification. Kank1 interacts with Daam1, known to bind to and activate a small GTPase, RhoA, in actin assembly. Knockdown of Kank1 or overexpression of Daam1, respectively, hyperactivates RhoA, potentially leading to the modulation of the activity of Aurora-A, a key regulator of centrosomal functions, eventually resulting in centrosomal amplification. Kank1 is also associated with contractile ring formation in collaboration with RhoA, and its deficiency results in the interruption of normal daughter cell separation, generating multinucleate cells. Such abnormal segregation of chromosomes may cause further chromosomal instability and abnormal gene functions, leading to tumorigenesis. Thus, Kank1 plays a crucial role in regulating the activity of RhoA through retrieving excess Daam1 and balancing the activities of RhoA and its effectors.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Carcinogenesis/genetics , Neoplasms/genetics , Tumor Suppressor Proteins/genetics , rhoA GTP-Binding Protein/genetics , Animals , Aurora Kinase A/genetics , Cell Division/genetics , Centrosome/metabolism , Chromosomal Instability/genetics , Chromosome Segregation/genetics , Cytoskeletal Proteins , Gene Knockdown Techniques , HEK293 Cells , Humans , Mice , Microfilament Proteins , NIH 3T3 Cells , Neoplasms/pathology , rho GTP-Binding Proteins
11.
Microarrays (Basel) ; 6(1)2017 Jan 30.
Article in English | MEDLINE | ID: mdl-28146102

ABSTRACT

The application of DNA microarray assay (DMA) has entered a new era owing to recent innovations in omics technologies. This review summarizes recent applications of DMA-based gene expression profiling by focusing on the screening and characterizationof traditional Chinese medicine. First, herbs, mushrooms, and dietary plants analyzed by DMA along with their effective components and their biological/physiological effects are summarized and discussed by examining their comprehensive list and a list of representative effective chemicals. Second, the mechanisms of action of traditional Chinese medicine are summarized by examining the genes and pathways responsible for the action, the cell functions involved in the action, and the activities found by DMA (silent estrogens). Third, applications of DMA for traditional Chinese medicine are discussed by examining reported examples and new protocols for its use in quality control. Further innovations in the signaling pathway based evaluation of beneficial effects and the assessment of potential risks of traditional Chinese medicine are expected, just as are observed in other closely related fields, such as the therapeutic, environmental, nutritional, and pharmacological fields.

12.
PLoS One ; 12(2): e0171390, 2017.
Article in English | MEDLINE | ID: mdl-28152041

ABSTRACT

Mammalian lignans or enterolignans are metabolites of plant lignans, an important category of phytochemicals. Although they are known to be associated with estrogenic activity, cell signaling pathways leading to specific cell functions, and especially the differences among lignans, have not been explored. We examined the estrogenic activity of enterolignans and their precursor plant lignans and cell signaling pathways for some cell functions, cell cycle and chemokine secretion. We used DNA microarray-based gene expression profiling in human breast cancer MCF-7 cells to examine the similarities, as well as the differences, among enterolignans, enterolactone and enterodiol, and their precursors, matairesinol, pinoresinol and sesamin. The profiles showed moderate to high levels of correlation (R values: 0.44 to 0.81) with that of estrogen (17ß-estradiol or E2). Significant correlations were observed among lignans (R values: 0.77 to 0.97), and the correlations were higher for cell functions related to enzymes, signaling, proliferation and transport. All the enterolignans/precursors examined showed activation of the Erk1/2 and PI3K/Akt pathways, indicating the involvement of rapid signaling through the non-genomic estrogen signaling pathway. However, when their effects on specific cell functions, cell cycle progression and chemokine (MCP-1) secretion were examined, positive effects were observed only for enterolactone, suggesting that signals are given in certain directions at a position closer to cell functions. We hypothesized that, while estrogen signaling is initiated by the enterolignans/precursors examined, their signals are differentially and directionally modulated later in the pathways, resulting in the differences at the cell function level.


Subject(s)
Estrogens/pharmacology , Lignans/pharmacology , Signal Transduction/drug effects , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , Cell Cycle/drug effects , Dioxoles/pharmacology , Furans/pharmacology , Gene Expression Profiling , Humans , MCF-7 Cells/drug effects , MCF-7 Cells/metabolism , Oligonucleotide Array Sequence Analysis
13.
Environ Pollut ; 213: 809-824, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27038213

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are often detected in the environment and are regarded as endocrine disruptors. We here designated mixtures of PAHs in the environment as environmental PAHs (ePAHs) to discuss their effects collectively, which could be different from the sum of the constituent PAHs. We first summarized the biological impact of environmental PAHs (ePAHs) found in the atmosphere, sediments, soils, and water as a result of human activities, accidents, or natural phenomena. ePAHs are characterized by their sources and forms, followed by their biological effects and social impact, and bioassays that are used to investigate their biological effects. The findings of the bioassays have demonstrated that ePAHs have the ability to affect the endocrine systems of humans and animals. The pathways that mediate cell signaling for the endocrine disruptions induced by ePAHs and PAHs have also been summarized in order to obtain a clearer understanding of the mechanisms responsible for these effects without animal tests; they include specific signaling pathways (MAPK and other signaling pathways), regulatory mechanisms (chromatin/epigenetic regulation, cell cycle/DNA damage control, and cytoskeletal/adhesion regulation), and cell functions (apoptosis, autophagy, immune responses/inflammation, neurological responses, and development/differentiation) induced by specific PAHs, such as benz[a]anthracene, benzo[a]pyrene, benz[l]aceanthrylene, cyclopenta[c,d]pyrene, 7,12-dimethylbenz[a]anthracene, fluoranthene, fluorene, 3-methylcholanthrene, perylene, phenanthrene, and pyrene as well as their derivatives. Estrogen signaling is one of the most studied pathways associated with the endocrine-disrupting activities of PAHs, and involves estrogen receptors and aryl hydrocarbon receptors. However, some of the actions of PAHs are contradictory, complex, and unexplainable. Although several possibilities have been suggested, such as direct interactions between PAHs and receptors and the suppression of their activities through other pathways, the mechanisms underlying the activities of PAHs remain unclear. Thus, standardized assay protocols for pathway-based assessments are considered to be important to overcome these issues.


Subject(s)
Endocrine Disruptors/toxicity , Environmental Exposure , Environmental Pollutants/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Animals , Biological Assay , DNA Damage , Endocrine Disruptors/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Environmental Pollutants/analysis , Epigenesis, Genetic/drug effects , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Receptors, Aryl Hydrocarbon/genetics
14.
Sensors (Basel) ; 15(10): 25831-67, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26473869

ABSTRACT

We summarize here the recent progress in fluorescence-based bioassays for the detection and evaluation of food materials by focusing on fluorescent dyes used in bioassays and applications of these assays for food safety, quality and efficacy. Fluorescent dyes have been used in various bioassays, such as biosensing, cell assay, energy transfer-based assay, probing, protein/immunological assay and microarray/biochip assay. Among the arrays used in microarray/biochip assay, fluorescence-based microarrays/biochips, such as antibody/protein microarrays, bead/suspension arrays, capillary/sensor arrays, DNA microarrays/polymerase chain reaction (PCR)-based arrays, glycan/lectin arrays, immunoassay/enzyme-linked immunosorbent assay (ELISA)-based arrays, microfluidic chips and tissue arrays, have been developed and used for the assessment of allergy/poisoning/toxicity, contamination and efficacy/mechanism, and quality control/safety. DNA microarray assays have been used widely for food safety and quality as well as searches for active components. DNA microarray-based gene expression profiling may be useful for such purposes due to its advantages in the evaluation of pathway-based intracellular signaling in response to food materials.


Subject(s)
Biological Assay , Food Analysis , Microarray Analysis , Spectrometry, Fluorescence , Fluorescent Dyes
15.
Environ Int ; 83: 11-40, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26073844

ABSTRACT

A comprehensive summary of more than 450 estrogenic chemicals including estrogenic endocrine disruptors is provided here to understand the complex and profound impact of estrogen action. First, estrogenic chemicals are categorized by structure as well as their applications, usage and effects. Second, estrogenic signaling is examined by the molecular mechanism based on the receptors, signaling pathways, crosstalk/bypassing and autocrine/paracrine/homeostatic networks involved in the signaling. Third, evaluation of estrogen action is discussed by focusing on the technologies and protocols of the assays for assessing estrogenicity. Understanding the molecular mechanisms of estrogen action is important to assess the action of endocrine disruptors and will be used for risk management based on pathway-based toxicity testing.


Subject(s)
Endocrine Disruptors/metabolism , Endocrine Disruptors/toxicity , Estrogens/metabolism , Estrogens/toxicity , Signal Transduction/drug effects , Animals , Humans
16.
Biomed Res Int ; 2014: 437871, 2014.
Article in English | MEDLINE | ID: mdl-24995295

ABSTRACT

New fluorescent Fluolid dyes have advantages over others such as stability against heat, dryness, and excess light. Here, we performed simultaneous immunostaining of renal tumors, clear cell renal cell carcinoma (RCC), papillary RCC, chromophobe RCC, acquired cystic disease-associated RCC (ACD-RCC), and renal angiomyolipoma (AML), with primary antibodies against Kank1, cytokeratin 7 (CK7), and CD10, which were detected with secondary antibodies labeled with Fluolid-Orange, Fluolid-Green, and Alexa Fluor 647, respectively. Kank1 was stained in normal renal tubules, papillary RCC, and ACD-RCC, and weakly or negatively in all other tumors. CK7 was positive in normal renal tubules, papillary RCC, and ACD-RCC. In contrast, CD10 was expressed in renal tubules and clear cell RCC, papillary RCC, AML, and AC-RCC, and weakly in chromophobe RCC. These results may contribute to differentiating renal tumors and subtypes of RCCs. We also examined the stability of fluorescence and found that fluorescent images of Fluolid dyes were identical between a tissue section and the same section after it was stored for almost three years at room temperature. This indicates that tissue sections can be stored at room temperature for a relatively long time after they are stained with multiple fluorescent markers, which could open a door for pathological diagnostics.


Subject(s)
Antibodies , Antigens, Neoplasm/immunology , Fluorescent Dyes , Kidney Neoplasms/diagnosis , Adaptor Proteins, Signal Transducing , Animals , Biomarkers, Tumor , Cytoskeletal Proteins , Humans , Keratin-7/immunology , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Neprilysin/immunology , Tumor Suppressor Proteins/immunology
17.
Cell Mol Life Sci ; 71(11): 2065-82, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24399289

ABSTRACT

We summarize updated information about DNA microarray-based gene expression profiling by focusing on its application to estrogenic chemicals. First, estrogenic chemicals, including natural/industrial estrogens and phytoestrogens, and the methods for detection and evaluation of estrogenic chemicals were overviewed along with a comprehensive list of estrogenic chemicals of natural or industrial origin. Second, gene expression profiling of chemicals using a focused microarray containing estrogen-responsive genes is summarized. Third, silent estrogens, a new type of estrogenic chemicals characterized by their estrogenic gene expression profiles without growth stimulative or inhibitory effects, have been identified so far exclusively by DNA microarray assay. Lastly, the prospect of a microarray assay is discussed, including issues such as commercialization, future directions of applications and quality control methods.


Subject(s)
Endocrine Disruptors/pharmacology , Estrogens/metabolism , Gene Expression Profiling , Gene Expression Regulation/drug effects , Phytochemicals/pharmacology , Phytoestrogens/pharmacology , Cell Line, Tumor , Estrogens/genetics , Humans , Microarray Analysis , Oligonucleotide Array Sequence Analysis , Quality Control , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Signal Transduction
18.
J Mol Histol ; 44(6): 639-44, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23907621

ABSTRACT

There is increasing evidence that ATP acts on purinergic receptors and mediates synaptic transmission in the retina. In a previous study, we raised the possibility that P2X-purinoceptors, presumably P2X(2)-purinoceptors in OFF-cholinergic amacrine cells, play a key role in the formation of OFF pathway-specific modulation. In this study, we examined whether the P2Y(1)-purinoceptors can function in cholinergic amacrine cells in the mouse retina since cholinergic amacrine cells in the rat retina express P2Y(1)-purinoceptors. P2Y(1)-purinoceptors were shown to be expressed in dendrites of both ON- and OFF-cholinergic amacrine cells in adults. At postnatal day 7, there was immunoreactivity for P2Y(1)-purinoceptors in the soma of cholinergic amacrine cells. At postnatal day 14, weak immunoreactivity for P2Y(1)-purinoceptors was detected in the dendrites but not in the soma of cholinergic amacrine cells. At postnatal day 21, strong immunoreactivity for P2Y(1)-purinoceptors was detected in dendrites of cholinergic amacrine cells. The expression pattern of P2Y(1)-purinoceptors was not affected by visual experience. We concluded that P2Y(1)-purinoceptors are not involved in the OFF-pathway-specific signal transmission in cholinergic amacrine cells of the mouse retina.


Subject(s)
Receptors, Purinergic P2Y1/metabolism , Retina/metabolism , Amacrine Cells/metabolism , Animals , Cholinergic Neurons/metabolism , Mice , Mice, Transgenic , Protein Transport , Rats , Signal Transduction , Synaptic Transmission
19.
Biochem Biophys Res Commun ; 434(2): 287-92, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23537649

ABSTRACT

Estrogen is a key factor to induce the sexually dimorphic nucleus (SDN) in the preoptic area (POA) of the rat brain. Identification of estrogen-dependent signaling pathways at SDN in POA during the critical period is a prerequisite for elucidating the mechanism. In the present study, we treated female rats with/without 17ß-estradiol (E2) at birth, designated as postnatal day 1 (P1), and prepared total RNA from brain slices containing SDN for DNA microarray analysis. Among the estrogen-responsive genes identified, protein kinase C-delta (PKC-δ) was significantly up-regulated by E2 at P5. We examined the downstream effectors of PKC-δ protein by Western blotting and found an E2-induced PKC-δ/Rac1/PAK1/LIMK1/cofilin pathway. In the pathway, E2 suppressed the phosphorylation (inactive form) of cofilin. This result was supported by immunohistochemistry, where the phosphorylation/dephosphorylation of cofilin occurred at SDN, which suggests that cell migration is a cue to create sexual dimorphism in POA.


Subject(s)
Actins/metabolism , Cell Movement , Cofilin 1/metabolism , Estradiol/pharmacology , Preoptic Area/drug effects , Sex Characteristics , Animals , Animals, Newborn , Blotting, Western , Cofilin 1/genetics , Cyclin-Dependent Kinase 5/genetics , Cyclin-Dependent Kinase 5/metabolism , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Female , Immunohistochemistry , Lim Kinases/genetics , Lim Kinases/metabolism , Oligonucleotide Array Sequence Analysis , Phosphorylation , Pregnancy , Preoptic Area/embryology , Preoptic Area/metabolism , Protein Kinase C-delta/genetics , Protein Kinase C-delta/metabolism , Rats , Rats, Wistar , Signal Transduction , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
20.
Inflammation ; 36(3): 767-79, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23392856

ABSTRACT

Chlorogenic acid (CGA), one of the most common phenolic acids, is found in many food and traditional Chinese herbs. Various bioactivities of CGA are studied. However, little is known about these properties of Flos Lonicerae extracts, and the difference in the effect between Flos Lonicerae extracts and CGA has not been reported. CGA was identified in Flos Lonicerae extracts by HPLC and determined qualitatively by quadrupole ion trap mass spectrometry. In this study, we evaluated the effect of Flos Lonicerae extracts and CGA on inflammatory-related gene expression, adhesion molecule expression and reactive oxygen species (ROS) production in perfluorooctane sulphonate (PFOS)-treated human umbilical vein endothelial cells (HUVECs). The suppression of transcription of IL-1ß, IL-6, COX-2, and P-Selectin genes with Flos Lonicerae extracts was greater than that of CGA in PFOS-treated HUVECs, while the degree of suppression on PFOS-induced expression of NOS3 and ICAM-1 was greater for CGA. Furthermore, the suppressive effect of Flos Lonicerae extracts on adhesion of monocytes onto PFOS-induced HUVECs was greater than that of CGA. In addition, Flos Lonicerae extracts and CGA were highly effective in reducing ROS although their effects were almost comparable. So, Flos Lonicerae extracts exhibited antioxidant activity and CGA was a major contributor to this activity. These results suggest that Flos Lonicerae extracts could be useful to prevent PFOS-mediated inflammatory diseases.


Subject(s)
Alkanesulfonic Acids/toxicity , Cell Adhesion/drug effects , Chlorogenic Acid/pharmacology , Fluorocarbons/toxicity , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/physiology , Inflammation/drug therapy , Lonicera , Plant Extracts/pharmacology , Antioxidants/metabolism , Cell Adhesion Molecules/biosynthesis , Cell Proliferation , Cell Survival , Cells, Cultured , Cyclooxygenase 2/biosynthesis , Drugs, Chinese Herbal , Human Umbilical Vein Endothelial Cells/immunology , Humans , Inflammation/chemically induced , Intercellular Adhesion Molecule-1/biosynthesis , Intercellular Adhesion Molecule-1/metabolism , Interleukin-1beta/biosynthesis , Interleukin-6/biosynthesis , Monocytes/drug effects , Monocytes/metabolism , Nitric Oxide Synthase Type III/biosynthesis , Nitric Oxide Synthase Type III/metabolism , P-Selectin/biosynthesis , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...