Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 4(1): 159, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542467

ABSTRACT

The structural mechanisms of single-pass transmembrane enzymes remain elusive. Kynurenine 3-monooxygenase (KMO) is a mitochondrial protein involved in the eukaryotic tryptophan catabolic pathway and is linked to various diseases. Here, we report the mammalian full-length structure of KMO in its membrane-embedded form, complexed with compound 3 (identified internally) and compound 4 (identified via DNA-encoded chemical library screening) at 3.0 Å resolution. Despite predictions suggesting that KMO has two transmembrane domains, we show that KMO is actually a single-pass transmembrane protein, with the other transmembrane domain lying laterally along the membrane, where it forms part of the ligand-binding pocket. Further exploration of compound 3 led to identification of the brain-penetrant compound, 5. We show that KMO is dimeric, and that mutations at the dimeric interface abolish its activity. These results will provide insight for the drug discovery of additional blood-brain-barrier molecules, and help illuminate the complex biology behind single-pass transmembrane enzymes.


Subject(s)
Cell Membrane/enzymology , Drug Discovery , Enzyme Inhibitors/pharmacology , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Kynurenine 3-Monooxygenase/metabolism , Animals , Binding Sites , Enzyme Inhibitors/chemistry , HEK293 Cells , Humans , Kynurenine 3-Monooxygenase/chemistry , Kynurenine 3-Monooxygenase/genetics , Ligands , Molecular Docking Simulation , Mutation , Protein Binding , Protein Domains , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...