Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-505777

ABSTRACT

Although it has been 2.5 years since the COVID-19 pandemic began, the transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a dead infected body remains unclear, and often, in Japan bereaved family members are not allowed to view in-person a loved one who has died from COVID-19. In this study, we analyzed the possibility of SARS-CoV-2 transmission from a dead body by using the hamster model. We also analyzed the effect of Angel-care--in which the pharynx, nostril, and rectum are plugged--and embalming on reducing transmissibility from dead bodies. We found that SARS-CoV-2 could be transmitted from the body of animals that died within a few days of infection; however, Angel-care and embalming were effective in preventing transmission from the dead body. These results suggest that protection from infection is essential when in contact with a SARS-CoV-2-infected dead body, and that sealing the cavities of a dead body is an important infection control step if embalming is not done. ImportanceWe found that SARS-CoV-2 could be transmitted from a dead body presumably via postmortem gases. However, we also found that postmortem care, such as plugging the pharynx, nostrils, and rectum, or embalming could prevent transmission from the dead body. These results indicate that protection from infection is essential when handling infected corpses, and that appropriate care of SARS-CoV-2-infected corpses is important.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-505450

ABSTRACT

The prevalence of the Omicron subvariant BA.2.75 is rapidly increasing in India and Nepal. In addition, BA.2.75 has been detected in at least 34 other countries and is spreading globally. However, the virological features of BA.2.75 are largely unknown. Here, we evaluated the replicative ability and pathogenicity of BA.2.75 clinical isolates in Syrian hamsters. Although we found no substantial differences in weight change among hamsters infected with BA.2, BA.5, or BA.2.75, the replicative ability of BA.2.75 in the lungs was higher than that of BA.2 and BA.5. Of note, BA.2.75 caused focal viral pneumonia in hamsters, characterized by patchy inflammation interspersed in alveolar regions, which was not observed in BA.5-infected hamsters. Moreover, in competition assays, BA.2.75 replicated better than BA.5 in the lungs of hamsters. These results suggest that BA.2.75 can cause more severe respiratory disease than BA.5 and BA.2 and should be closely monitored.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22277481

ABSTRACT

Japan has reported a small number of COVID-19 cases relative to other countries. Because not all infected people receive diagnostic tests for COVID-19, the reported number of COVID-19 cases must be lower than the actual number of infections. Assessments of the presence of antibodies against the spike protein of SARS-CoV-2 can retrospectively determine the history of natural infection and vaccination. In this study, we assessed SARS-CoV-2 seroprevalence by analyzing over 60,000 samples collected in Japan from February 2020 to March 2022. The results showed that about 5% of the Japanese population had been infected with the virus by January 2021. The seroprevalence increased with the administration of vaccinations to adults; however, among the elderly, it was not as high as the vaccination rate, probably due to poor immune responses to the vaccines and waning immunity. The infection was spread during the epidemic waves caused by the SARS-CoV-2 Delta and Omicron variants among children who were not eligible for vaccination. Nevertheless, their seroprevalence was as low as 10% as of March 2022. Our study underscores the low incidence of SARS-CoV-2 infection in Japan and the effects of vaccination on immunity at the population level.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-496751

ABSTRACT

The use of therapeutic neutralizing antibodies against SARS-CoV-2 infection has been highly effective. However, there remain few practical antibodies against viruses that are acquiring mutations. In this study, we created 494 monoclonal antibodies from COVID-19-convalescent patients, and identified antibodies that exhibited comparable neutralizing ability to clinically used antibodies in the neutralization assay using pseudovirus and authentic virus including variants of concerns. These antibodies have different profiles against various mutations, which were confirmed by cell-based assay and cryo-electron microscopy. To prevent antibody-dependent enhancement, N297A modification was introduced, and showed a reduction of lung viral RNAs by therapeutic administration in a hamster model. In addition, an antibody cocktail consisting of three antibodies was also administered therapeutically to a macaque model, which resulted in reduced viral titers of swabs and lungs and reduced lung tissue damage scores. These results showed that our antibodies have sufficient antiviral activity as therapeutic candidates.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-21263523

ABSTRACT

ObjectivesAssays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method to reduce the workload of these assays, and measure reactivity of SARS-CoV-2 and HCoV antigens to human serum samples collected before and during the COVID-19 pandemic. MethodsWe apply Bayesian hierarchical modelling to ELISA measurements of human serum samples against SARS-CoV-2 and HCoV antigens. ResultsInflection titers for SARS-CoV-2 full-length spike protein (S1S2), spike protein receptor-binding domain (RBD), and nucleoprotein (N) inferred from three spread-out dilutions correlated with those inferred from eight consecutive dilutions with an R2 value of 0.97 or higher. We confirm existing findings showing a small proportion of pre-pandemic human serum samples contain cross-reactive antibodies to SARS-CoV-2 S1S2 and N, and that SARS-CoV-2 infection increases serum reactivity to the beta-HCoVs OC43 and HKU1 S1S2. ConclusionsIn serial dilution assays, large savings in resources and/or increases in throughput can be achieved by reducing the number of dilutions measured and using Bayesian hierarchical modelling to infer inflection or endpoint titers. We have released software for conducting these types of analysis.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-450453

ABSTRACT

Despite various attempts to treat SARS-CoV-2-infected patients with COVID-19-convalescent plasmas, neither appropriate approach nor clinical utility has been established. We examined the efficacy of administration of highly-neutralizing COVID-19-convalescent plasma (hn-plasmas) and such plasma-derived IgG administration using the Syrian hamster COVID-19 model. Two hn-plasmas, which were in the best 1% of 340 neutralizing-activity-determined convalescent plasma samples, were intraperitoneally administered to SARS-CoV-2-infected hamsters, resulting in significant reduction of viral titers in lungs by up to 32-fold as compared to the viral titers in hamsters receiving control non-neutralizing plasma, while with two moderately neutralizing plasmas (mn-plasmas) administered, viral titer reduction was by up to 6-fold. IgG fractions purified from the two hn-plasmas also reduced viral titers in lungs than those from the two mn-plasmas. The severity of lung lesions seen in hamsters receiving hn-plasmas was minimal to moderate as assessed using micro-computerized tomography, which histological examination confirmed. Western blotting revealed that all four COVID-19-convalescent-plasmas variably contained antibodies against SARS-CoV-2 components including the receptor-binding domain and S1 domain. The present data strongly suggest that administering potent-neutralizing-activity-confirmed COVID-19-convalescent plasmas would be efficacious in treating patients with COVID-19. ImportanceConvalescent plasmas obtained from patients, who recovered from a specific infection, have been used as agents to treat other patients infected with the very pathogen. To treat using convalescent plasmas, despite that more than 10 randomized-controlled-clinical-trials have been conducted and more than 100 studies are currently ongoing, the effects of convalescent plasma against COVID-19 remained uncertain. On the other hand, certain COVID-19 vaccines have been shown to reduce the clinical COVID-19 onset by 94-95%, for which the elicited SARS-CoV-2-neutralizing antibodies are apparently directly responsible. Here, we demonstrate that highly-neutralizing-effect-confirmed convalescent plasmas significantly reduce the viral titers in the lung of SARS-CoV-2-infected Syrian hamsters and block the development of virally-induced lung lesions. The present data provide a proof-of-concept that the presence of highly-neutralizing antibody in COVID-19-convalescent plasmas is directly responsible for the reduction of viral replication and support the use of highly-neutralizing antibody-containing plasmas in COVID-19 therapy with convalescent plasmas.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-448820

ABSTRACT

During the current SARS-CoV-2 pandemic, a variety of mutations have been accumulated in the viral genome, and currently, four variants of concerns (VOCs) are considered as the hazardous SARS-CoV-2 variants to the human society1. The newly emerging VOC, the B.1.617.2/Delta variant, closely associates with a huge COVID-19 surge in India in Spring 20212. However, its virological property remains unclear. Here, we show that the B.1.617.2/Delta variant is highly fusogenic, and notably, more pathogenic than prototypic SARS-CoV-2 in infected hamsters. The P681R mutation in the spike protein, which is highly conserved in this lineage, facilitates the spike protein cleavage and enhances viral fusogenicity. Moreover, we demonstrate that the P681R-bearing virus exhibits higher pathogenicity than the parental virus. Our data suggest that the P681R mutation is a hallmark that characterizes the virological phenotype of the B.1.617.2/Delta variant and is closely associated with enhanced pathogenicity.

8.
Preprint in English | bioRxiv | ID: ppbiorxiv-433852

ABSTRACT

In 2020, two mRNA-based vaccines, encoding the full length of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, have been introduced for control of the coronavirus disease (COVID-19) pandemic1,2. However, reactogenicity, such as fever, caused by innate immune responses to the vaccine formulation remains to be improved. Here, we optimized a lipid nanoparticle (LNP)-based mRNA vaccine candidate, encoding the SARS-CoV-2 spike protein receptor-binding domain (LNP-mRNA-RBD), which showed improved immunogenicity by removing reactogenic materials from the vaccine formulation and protective potential against SARS-CoV-2 infection in cynomolgus macaques. LNP-mRNA-RBD induced robust antigen-specific B cells and follicular helper T cells in the BALB/c strain but not in the C57BL/6 strain; the two strains have contrasting abilities to induce type I interferon production by dendritic cells. Removal of reactogenic materials from original synthesized mRNA by HPLC reduced type I interferon (IFN) production by dendritic cells, which improved immunogenicity. Immunization of cynomolgus macaques with an LNP encapsulating HPLC-purified mRNA induced robust anti-RBD IgG in the plasma and in various mucosal areas, including airways, thereby conferring protection against SARS-CoV-2 infection. Therefore, fine-tuning the balance between the immunogenic and reactogenic activity of mRNA-based vaccine formulations may offer safer and more efficacious outcomes.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-054981

ABSTRACT

Although infection by SARS-CoV-2, the causative agent of COVID-19, is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked MERS-CoV S protein-initiated cell fusion by targeting TMPRSS2, and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on SARS-CoV-2 S protein, ACE2 and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an EC50 around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. These findings, together with accumulated clinical data regarding its safety, make nafamostat a likely candidate drug to treat COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...