Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Breed Sci ; 72(2): 141-149, 2022 Apr.
Article in English | MEDLINE | ID: mdl-36275935

ABSTRACT

Cytoplasmic male sterility (CMS) is widely used to control pollination in the production of commercial F1 hybrid seed in sorghum. So far, 6 major fertility restorer genes, Rf1 to Rf6, have been reported in sorghum. Here, we fine-mapped the Rf5 locus on sorghum chromosome 5 using descendant populations of a 'Nakei MS-3A' × 'JN43' cross. The Rf5 locus was narrowed to a 140-kb region in BTx623 genome (161-kb in JN43) with 16 predicted genes, including 6 homologous to the rice fertility restorer Rf1 (PPR.1 to PPR.6). These 6 homologs have tandem pentatricopeptide repeat (PPR) motifs. Many Rf genes encode PPR proteins, which bind RNA transcripts and modulate gene expression at the RNA level. No PPR genes were detected at the Rf5 locus on the corresponding homologous chromosome of rice, foxtail millet, or maize, so this gene cluster may have originated by chromosome translocation and duplication after the divergence of sorghum from these species. Comparison of the sequences of these genes between fertile and CMS lines identified PPR.4 as the most plausible candidate gene for Rf5.

2.
Breed Sci ; 70(3): 379-386, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32714061

ABSTRACT

To clarify the genetic mechanisms of fertility restoration in sorghum F1 hybrids produced in Japan ('Ryokuryu', 'Hazuki', 'Haretaka', 'Natsuibuki', 'Hanaaoba', 'Akidachi' and 'Kazetachi'), we analyzed QTLs for fertility restoration using seven F2 populations derived from those hybrids. By QTL mapping with a series of SSR markers, we detected three major QTLs for fertility restoration. These data and the results of haplotype analysis of known fertility restorer (Rf) genes showed that qRf5, corresponding to the Rf5 locus, was the most widely used Rf gene for fertility restoration of sorghum F1 hybrids among the lines tested. Other major Rf genes detected were qRf8, corresponding to Rf1, and qRf2, corresponding to Rf2. QTLs for grain weight also corresponded to these Rf loci. A minor QTL, qRf3, may also affect restoration of fertility. Our data show that three major Rfs-Rf1, Rf2, and Rf5-were used in F1 hybrid sorghum production in Japan. This knowledge can be used to improve the efficiency of the F1 sorghum breeding program.

3.
Breed Sci ; 68(5): 582-586, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30697119

ABSTRACT

Purple corn is a maize variety (Zea mays L.) with high anthocyanin content. When purple corn is used as forage, its anthocyanins may mitigate oxidative stresses causing lower milk production in dairy cows. In this study, we analyzed quantitative trait loci (QTLs) for anthocyanin pigmentation of maize organs in an F2 population derived from a cross between the Peruvian cultivar 'JC072A' (purple) and the inbred line 'Ki68' (yellowish) belonged to Japanese flint. We detected 17 significant QTLs on chromosomes 1-3, 6, and 10. Because the cob accounts for most of the fresh weight of the plant ear, we focused on a significant QTL for purple cob on chromosome 6. This QTL also conferred pigmentation of anther, spikelet, leaf sheath, culm, and bract leaf, and was confirmed by using two F3 populations. The gene Pl1 (purple plant 1) is the most likely candidate gene in this QTL region because the amino acid sequence encoded by Pl1-JC072A is similar to that of an Andean allele, Pl-bol3, which is responsible for anthocyanin production. The markers designed for the Pl1 alleles will be useful for the breeding of F1 lines with anthocyanin pigmentation in cobs.

SELECTION OF CITATIONS
SEARCH DETAIL
...