Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Chem Phys ; 157(17): 174501, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36347674

ABSTRACT

We demonstrate that the modified Kempers model, a recently developed theoretical model for the Soret effect in oxide melts, is applicable for predicting the composition dependence of the Soret coefficient in three binary molecular liquids with negative enthalpies of mixing. We compared the theoretical and experimental values for water/ethanol, water/methanol, water/ethylene glycol, water/acetone, and benzene/n-heptane mixtures. In water/ethanol, water/methanol, and water/ethylene glycol, which have negative enthalpies of mixing across the entire mole fraction range, the modified Kempers model successfully predicts the sign change of the Soret coefficient with high accuracy, whereas, in water/acetone and benzene/n-heptane, which have composition ranges with positive enthalpies of mixing, it cannot predict the sign change of the Soret coefficient. These results suggest that the model is applicable in composition ranges with negative enthalpies of mixing and provides a framework for predicting and understanding the Soret effect from the equilibrium thermodynamic properties of mixing, such as the partial molar volume, partial molar enthalpy of mixing, and chemical potential.

2.
J Chem Phys ; 156(21): 214504, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35676140

ABSTRACT

Using a laser-induced local-heating experiment combined with temperature analysis, we observed the composition-dependent sign inversion of the Soret coefficient of SiO2 in binary silicate melts, which was successfully explained by a modified Kempers model used for describing the Soret effect in oxide melts. In particular, the diffusion of SiO2 to the cold side under a temperature gradient, which is an anomaly in silicate melts, was observed in the SiO2-poor compositions. The theoretical model indicates that the thermodynamic mixing properties of oxides, partial molar enthalpy of mixing, and partial molar volume are the dominant factors for determining the migration direction of the SiO2 component under a temperature gradient.

3.
J Chem Phys ; 154(7): 074501, 2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33607869

ABSTRACT

The Soret effect in silicate melts has attracted attention in earth and material sciences, particularly in glass science and engineering, because a compositional change caused by the Soret effect modifies the material properties of silicate melts. We investigated the Soret effect in an Na2O-SiO2 system, which is the most common representative of silicate melts. Our theoretical approach based on the modified Kempers model and non-equilibrium molecular dynamics simulation was validated for 30Na2O-70SiO2(mol. %). The sign and order of the absolute values of the calculated Soret coefficients were consistent with the experimental values. The positive Soret coefficient of SiO2 in the SiO2-poor composition range was accurately predicted. Previous experimental studies have focused on SiO2-rich compositions, and only the negative sign, indicating SiO2 migration to the hot side, has been observed. In the SiO2-poor composition range, the Q0 structure was dominant and had four Si-O-Na bonds around an SiO4 unit. The Si-O-Na bond had high enthalpic stability and contributed to the large negative enthalpy of SiO2 mixing. According to our model, components with a large negative partial molar enthalpy of mixing will concentrate in the cold region. The microscopic and thermodynamic origins of the sign change in the Soret effect were determined.

SELECTION OF CITATIONS
SEARCH DETAIL