Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 60(23): 9508-9530, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29120624

ABSTRACT

The discovery of 1-({6-[(2-methoxy-4-propylbenzyl)oxy]-1-methyl-3,4-dihydronaphthalen-2-yl}methyl)azetidine-3-carboxylic acid 13n (ceralifimod, ONO-4641), a sphingosine-1-phosphate (S1P) receptor agonist selective for S1P1 and S1P5, is described. While it has been revealed that the modulation of the S1P1 receptor is an effective way to treat autoimmune diseases such as relapsing-remitting multiple sclerosis (RRMS), it was also reported that activation of the S1P3 receptor is implicated in some undesirable effects. We carried out a structure-activity relationship (SAR) study of hit compound 6 with an amino acid moiety in the hydrophilic head region. Following identification of a lead compound with a dihydronaphthalene central core by inducing conformational constraint, optimization of the lipophilic tail region led to the discovery of 13n as a clinical candidate that exhibited >30 000-fold selectivity for S1P1 over S1P3 and was potent in a peripheral lymphocyte lowering (PLL) test in mice (ED50 = 0.029 mg/kg, 24 h after oral dosing).


Subject(s)
Azetidines/pharmacology , Lymphocytes/drug effects , Naphthalenes/pharmacology , Receptors, Lysosphingolipid/agonists , Administration, Oral , Animals , Autoimmune Diseases/drug therapy , Azetidines/administration & dosage , Azetidines/chemistry , Azetidines/pharmacokinetics , CHO Cells , Cricetulus , Female , Humans , Macaca fascicularis , Male , Mice , Mice, Inbred BALB C , Naphthalenes/administration & dosage , Naphthalenes/chemistry , Naphthalenes/pharmacokinetics , Rats, Inbred Lew , Rats, Sprague-Dawley
2.
Am J Physiol Heart Circ Physiol ; 291(6): H2723-34, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16815980

ABSTRACT

Changes in K(+) conductances and their contribution to membrane depolarization in the setting of an acidic pH environment have been studied in myocytes from aortic smooth muscle cells of spontaneously hypertensive rats (SHR) compared with those from Wistar-Kyoto (WKY) rats. The resting membrane potential (RMP) of aortic smooth muscle at extracellular pH (pH(o)) of 7.4 was significantly more depolarized in SHR than in WKY rats. Acidification to pH(o) 6.5 made this difference in RMP between SHR and WKY rats more significant by further depolarizing the SHR myocytes. Large-conductance Ca(2+)-activated K(+) (BK) currents, which were markedly suppressed by acidification, were larger in aortic myocytes of SHR than in those of WKY rats. In contrast, acid-sensitive, non-BK currents were smaller in SHR. Western blot analyses showed that expression of BK-alpha- and -beta(1) subunits in SHR aortas was upregulated and comparable with those in WKY rats, respectively. Additional electrophysiological and molecular studies showed that pH- and halothane-sensitive two-pore domain weakly inward rectifying K(+) channel (TWIK)-like acid-sensitive K(+) (TASK) channel subtypes were functionally expressed in aortas, and TASK1 expression was significantly higher in WKY than in SHR. Although the background current through TASK channels at normal pH(o) (7.4) was small and may not contribute significantly to the regulation of RMP, TASK channel activation by halothane or alkalization (pH(o) 8.0) induced significant hyperpolarization in WKY but not in SHR. In conclusion, the larger depolarization and subsequent abnormal contractions after acidification in aortic myocytes in the setting of SHR hypertension are mainly attributable to the larger contribution of BK current to the total membrane conductance than in WKY aortas.


Subject(s)
Aorta/metabolism , Hypertension/physiopathology , Muscle, Smooth, Vascular/metabolism , Potassium Channels, Calcium-Activated/metabolism , Potassium Channels, Tandem Pore Domain/metabolism , Animals , Aorta/pathology , Aorta/physiopathology , Down-Regulation/physiology , Electrophysiology , Halothane/pharmacology , Hydrogen-Ion Concentration , Hypertension/pathology , Male , Membrane Potentials/genetics , Membrane Potentials/physiology , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/physiopathology , Myocardial Contraction/physiology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Nerve Tissue Proteins , Potassium Channels, Calcium-Activated/genetics , Potassium Channels, Tandem Pore Domain/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Inbred SHR , Rats, Inbred WKY
SELECTION OF CITATIONS
SEARCH DETAIL
...