Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542461

ABSTRACT

While untargeted analysis of biological tissues with ambient mass spectrometry analysis probes has been widely reported in the literature, there are currently no guidelines to standardize the workflows for the experimental design, creation, and validation of molecular models that are utilized in these methods to perform class predictions. By drawing parallels with hurdles that are faced in the field of food fraud detection with untargeted mass spectrometry, we provide a stepwise workflow for the creation, refinement, evaluation, and assessment of the robustness of molecular models, aimed at meaningful interpretation of mass spectrometry-based tissue classification results. We propose strategies to obtain a sufficient number of samples for the creation of molecular models and discuss the potential overfitting of data, emphasizing both the need for model validation using an independent cohort of test samples, as well as the use of a fully characterized feature-based approach that verifies the biological relevance of the features that are used to avoid false discoveries. We additionally highlight the need to treat molecular models as "dynamic" and "living" entities and to further refine them as new knowledge concerning disease pathways and classifier feature noise becomes apparent in large(r) population studies. Where appropriate, we have provided a discussion of the challenges that we faced in our development of a 10 s cancer classification method using picosecond infrared laser mass spectrometry (PIRL-MS) to facilitate clinical decision-making at the bedside.


Subject(s)
Workflow , Humans , Mass Spectrometry/methods
2.
J Med Chem ; 67(6): 4707-4725, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38498998

ABSTRACT

Despite decades of research on new diffuse intrinsic pontine glioma (DIPG) treatments, little or no progress has been made on improving patient outcomes. In this work, we explored novel scaffold modifications of M4K2009, a 3,5-diphenylpyridine ALK2 inhibitor previously reported by our group. Here we disclose the design, synthesis, and evaluation of a first-in-class set of 5- to 7-membered ether-linked and 7-membered amine-linked constrained inhibitors of ALK2. This rigidification strategy led us to the discovery of the ether-linked inhibitors M4K2308 and M4K2281 and the amine-linked inhibitors M4K2304 and M4K2306, each with superior potency against ALK2. Notably, M4K2304 and M4K2306 exhibit exceptional selectivity for ALK2 over ALK5, surpassing the reference compound. Preliminary studies on their in vivo pharmacokinetics, including blood-brain barrier penetration, revealed that these constrained scaffolds have favorable exposure and do open a novel chemical space for further optimization and future evaluation in orthotopic models of DIPG.


Subject(s)
Amines , Ethers , Humans
3.
Anal Chem ; 96(3): 1019-1028, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38190738

ABSTRACT

Picosecond infrared laser mass spectrometry (PIRL-MS) is shown, through a retrospective patient tissue study, to differentiate medulloblastoma cancers from pilocytic astrocytoma and two molecular subtypes of ependymoma (PF-EPN-A, ST-EPN-RELA) using laser-extracted lipids profiled with PIRL-MS in 10 s of sampling and analysis time. The average sensitivity and specificity values for this classification, taking genomic profiling data as standard, were 96.41 and 99.54%, and this classification used many molecular features resolvable in 10 s PIRL-MS spectra. Data analysis and liquid chromatography coupled with tandem high-resolution mass spectrometry (LC-MS/MS) further allowed us to reduce the molecular feature list to only 18 metabolic lipid markers most strongly involved in this classification. The identified 'metabolite array' was comprised of a variety of phosphatidic and fatty acids, ceramides, and phosphatidylcholine/ethanolamine and could mediate the above-mentioned classification with average sensitivity and specificity values of 94.39 and 98.78%, respectively, at a 95% confidence in prediction probability threshold. Therefore, a rapid and accurate pathology classification of select pediatric brain cancer types from 10 s PIRL-MS analysis using known metabolic biomarkers can now be available to the neurosurgeon. Based on retrospective mining of 'survival' versus 'extent-of-resection' data, we further identified pediatric cancer types that may benefit from actionable 10 s PIRL-MS pathology feedback. In such cases, aggressiveness of the surgical resection can be optimized in a manner that is expected to benefit the patient's overall or progression-free survival. PIRL-MS is a promising tool to drive such personalized decision-making in the operating theater.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Humans , Child , Chromatography, Liquid , Lipidomics , Retrospective Studies , Infrared Rays , Tandem Mass Spectrometry , Lasers , Brain Neoplasms/diagnosis
4.
Anal Chem ; 95(38): 14430-14439, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37695851

ABSTRACT

Rapid molecular profiling of biological tissues with picosecond infrared laser mass spectrometry (PIRL-MS) has enabled the detection of clinically important histologic types and molecular subtypes of human cancers in as little as 10 s of data collection and analysis time. Utilizing an engineered cell line model of actionable BRAF-V600E mutation, we observed statistically significant differences in 10 s PIRL-MS molecular profiles between BRAF-V600E and BRAF-wt cells. Multivariate statistical analyses revealed a list of mass-to-charge (m/z) values most significantly responsible for the identification of BRAF-V600E mutation status in this engineered cell line that provided a highly controlled testbed for this observation. These metabolites predicted BRAF-V600E expression in human melanoma cell lines with greater than 98% accuracy. Through chromatography and tandem mass spectrometry analysis of cell line extracts, a 30-member "metabolite array" was characterized for determination of BRAF-V600E expression levels in subcutaneous melanoma xenografts with an average sensitivity and specificity of 95.6% with 10 s PIRL-MS analysis. This proof-of-principle work warrants a future large-scale study to identify a metabolite array for 10 s determination of actionable BRAF-V600E mutation in human tissue to guide patient care.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Humans , Proto-Oncogene Proteins B-raf/genetics , Melanoma/genetics , Tandem Mass Spectrometry , Cell Extracts , Mutation , Lipids
5.
Cell Chem Biol ; 30(7): 795-810.e8, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37369212

ABSTRACT

Rising drug resistance among pathogenic fungi, paired with a limited antifungal arsenal, poses an increasing threat to human health. To identify antifungal compounds, we screened the RIKEN natural product depository against representative isolates of four major human fungal pathogens. This screen identified NPD6433, a triazenyl indole with broad-spectrum activity against all screening strains, as well as the filamentous mold Aspergillus fumigatus. Mechanistic studies indicated that NPD6433 targets the enoyl reductase domain of fatty acid synthase 1 (Fas1), covalently inhibiting its flavin mononucleotide-dependent NADPH-oxidation activity and arresting essential fatty acid biosynthesis. Robust Fas1 inhibition kills Candida albicans, while sublethal inhibition impairs diverse virulence traits. At well-tolerated exposures, NPD6433 extended the lifespan of nematodes infected with azole-resistant C. albicans. Overall, identification of NPD6433 provides a tool with which to explore lipid homeostasis as a therapeutic target in pathogenic fungi and reveals a mechanism by which Fas1 function can be inhibited.


Subject(s)
Antifungal Agents , Candida albicans , Humans , Antifungal Agents/pharmacology , Aspergillus fumigatus , Virulence , Microbial Sensitivity Tests
6.
ACS Med Chem Lett ; 14(2): 199-210, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36793435

ABSTRACT

B cell lymphoma 6 (BCL6), a highly regulated transcriptional repressor, is deregulated in several forms of non-Hodgkin lymphoma (NHL), most notably in diffuse large B-cell lymphoma (DLBCL). The activities of BCL6 are dependent on protein-protein interactions with transcriptional co-repressors. To find new therapeutic interventions addressing the needs of patients with DLBCL, we initiated a program to identify BCL6 inhibitors that interfere with co-repressor binding. A virtual screen hit with binding activity in the high micromolar range was optimized by structure-guided methods, resulting in a novel and highly potent inhibitor series. Further optimization resulted in the lead candidate 58 (OICR12694/JNJ-65234637), a BCL6 inhibitor with low nanomolar DLBCL cell growth inhibition and an excellent oral pharmacokinetic profile. Based on its overall favorable preclinical profile, OICR12694 is a highly potent, orally bioavailable candidate for testing BCL6 inhibition in DLBCL and other neoplasms, particularly in combination with other therapies.

7.
Anal Chem ; 94(48): 16821-16830, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36395434

ABSTRACT

Currently, a large number of skin biopsies are taken for each true skin cancer case detected, creating a need for a rapid, high sensitivity, and specificity skin cancer detection tool to reduce the number of unnecessary biopsies taken from benign tissue. Picosecond infrared laser mass spectrometry (PIRL-MS) using a hand-held sampling probe is reported to detect and classify melanoma, squamous cell carcinoma, and normal skin with average sensitivity and specificity values of 86-95% and 91-98%, respectively (at a 95% confidence level) solely requiring 10 s or less of total data collection and analysis time. Classifications are not adversely affected by specimen's quantity of melanin pigments and are mediated by a number of metabolic lipids, further identified herein as potential biomarkers for skin cancer-type differentiation, 19 of which were sufficient here (as a fully characterized metabolite array) to provide high specificity and sensitivity classification of skin cancer types. In situ detection was demonstrated in an intradermal melanoma mouse model wherein in vivo sampling did not cause significant discomfort. PIRL-MS sampling is further shown to be compatible with downstream gross histopathologic evaluations despite loss of tissue from the immediate laser sampling site(s) and can be configured using selective laser pulses to avoid thermal damage to normal skin. Therefore, PIRL-MS may be employed as a decision-support tool to reduce both the subjectivity of clinical diagnosis and the number of unnecessary biopsies currently required for skin cancer screening.


Subject(s)
Melanoma , Skin Neoplasms , Mice , Animals , Feasibility Studies , Lasers , Skin Neoplasms/diagnosis , Infrared Rays , Mass Spectrometry , Melanoma/diagnosis
10.
J Med Chem ; 64(20): 15017-15036, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34648286

ABSTRACT

USP5 is a deubiquitinase that has been implicated in a range of diseases, including cancer, but no USP5-targeting chemical probe has been reported to date. Here, we present the progression of a chemical series that occupies the C-terminal ubiquitin-binding site of a poorly characterized zinc-finger ubiquitin binding domain (ZnF-UBD) of USP5 and competitively inhibits the catalytic activity of the enzyme. Exploration of the structure-activity relationship, complemented with crystallographic characterization of the ZnF-UBD bound to multiple ligands, led to the identification of 64, which binds to the USP5 ZnF-UBD with a KD of 2.8 µM and is selective over nine proteins containing structurally similar ZnF-UBD domains. 64 inhibits the USP5 catalytic cleavage of a di-ubiquitin substrate in an in vitro assay. This study provides a chemical and structural framework for the discovery of a chemical probe to delineate USP5 function in cells.


Subject(s)
Endopeptidases/metabolism , Enzyme Inhibitors/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Structure-Activity Relationship
11.
J Mol Biol ; 433(23): 167294, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34662547

ABSTRACT

Activating mutations in the epidermal growth factor receptor (EGFR) are common driver mutations in non-small cell lung cancer (NSCLC). First, second and third generation EGFR tyrosine kinase inhibitors (TKIs) are effective at inhibiting mutant EGFR NSCLC, however, acquired resistance is a major issue, leading to disease relapse. Here, we characterize a small molecule, EMI66, an analog of a small molecule which we previously identified to inhibit mutant EGFR signalling via a novel mechanism of action. We show that EMI66 attenuates receptor tyrosine kinase (RTK) expression and signalling and alters the electrophoretic mobility of Coatomer Protein Complex Beta 2 (COPB2) protein in mutant EGFR NSCLC cells. Moreover, we demonstrate that EMI66 can alter the subcellular localization of EGFR and COPB2 within the early secretory pathway. Furthermore, we find that COPB2 knockdown reduces the growth of mutant EGFR lung cancer cells, alters the post-translational processing of RTKs, and alters the endoplasmic reticulum (ER) stress response pathway. Lastly, we show that EMI66 treatment also alters the ER stress response pathway and inhibits the growth of mutant EGFR lung cancer cells and organoids. Our results demonstrate that targeting of COPB2 with EMI66 presents a viable approach to attenuate mutant EGFR signalling and growth in NSCLC.


Subject(s)
Coatomer Protein/genetics , Coatomer Protein/metabolism , Drug Discovery , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Gene Expression Regulation, Neoplastic/drug effects , Receptor Protein-Tyrosine Kinases/genetics , Drug Discovery/methods , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects
12.
J Med Chem ; 64(15): 11129-11147, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34291633

ABSTRACT

Both previous and additional genetic knockdown studies reported herein implicate G protein-coupled receptor kinase 6 (GRK6) as a critical kinase required for the survival of multiple myeloma (MM) cells. Therefore, we sought to develop a small molecule GRK6 inhibitor as an MM therapeutic. From a focused library of known kinase inhibitors, we identified two hits with moderate biochemical potencies against GRK6. From these hits, we developed potent (IC50 < 10 nM) analogues with selectivity against off-target kinases. Further optimization led to the discovery of an analogue (18) with an IC50 value of 6 nM against GRK6 and selectivity against a panel of 85 kinases. Compound 18 has potent cellular target engagement and antiproliferative activity against MM cells and is synergistic with bortezomib. In summary, we demonstrate that targeting GRK6 with small molecule inhibitors represents a promising approach for MM and identify 18 as a novel, potent, and selective GRK6 inhibitor.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , G-Protein-Coupled Receptor Kinases/antagonists & inhibitors , Multiple Myeloma/drug therapy , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , G-Protein-Coupled Receptor Kinases/metabolism , Humans , Mice , Models, Molecular , Molecular Structure , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Quinazolines/chemical synthesis , Quinazolines/chemistry , Structure-Activity Relationship
13.
ACS Med Chem Lett ; 12(5): 846-850, 2021 May 13.
Article in English | MEDLINE | ID: mdl-34055235

ABSTRACT

Mutations in the gene encoding activin receptor-like kinase 2 (ALK2) are implicated in the pathophysiology of a pediatric brainstem cancer, diffuse intrinsic pontine glioma (DIPG). Inhibitors of ALK2 that cross the blood-brain barrier have been proposed as a method of treatment for DIPG. As part of an open science approach to radiopharmaceutical and drug discovery, we developed 11C-labeled radiotracers from potent and selective lead ALK2 inhibitors to investigate their brain permeability through positron emission tomography (PET) neuroimaging. Four radiotracers were synthesized by 11C-methylation and assessed by dynamic PET imaging in healthy Sprague-Dawley rats. One of the compounds, [ 11 C]M4K2127, showed high initial brain uptake (SUV ∼ 2), including in the region of interest (pons). This data supports the use of this chemotype as a brain penetrant ALK2 inhibitor that permeates evenly into the pons with potential application for the treatment of DIPG.

14.
Anal Chem ; 93(10): 4408-4416, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33651938

ABSTRACT

Spatially resolved ambient mass spectrometry imaging methods have gained popularity to characterize cancer sites and their borders using molecular changes in the lipidome. This utility, however, is predicated on metabolic homogeneity at the border, which would create a sharp molecular transition at the morphometric borders. We subjected murine models of human medulloblastoma brain cancer to mass spectrometry imaging, a technique that provides a direct readout of tissue molecular content in a spatially resolved manner. We discovered a distance-dependent gradient of cancer-like lipid molecule profiles in the brain tissue within 1.2 mm of the cancer border, suggesting that a cancer-like state progresses beyond the histologic border, into the healthy tissue. The results were further corroborated using orthogonal liquid chromatography and mass spectrometry (LC-MS) analysis of selected tissue regions subjected to laser capture microdissection. LC-MS/MS analysis for robust identification of the affected molecules implied changes in a number of different lipid classes, some of which are metabolized from the essential docosahexaenoic fatty acid (DHA) present in the interstitial fluid. Metabolic molecular borders are thus not as sharp as morphometric borders, and mass spectrometry imaging can reveal molecular nuances not observed with microscopy. Caution must be exercised in interpreting multimodal imaging results stipulated on a coincidental relationship between metabolic and morphometric borders of cancer, at least within animal models used in preclinical research.


Subject(s)
Neoplasms , Tandem Mass Spectrometry , Animals , Chromatography, Liquid , Humans , Laser Capture Microdissection , Mice , Microscopy
15.
JCI Insight ; 6(5)2021 03 08.
Article in English | MEDLINE | ID: mdl-33476303

ABSTRACT

TAK-243 is a first-in-class inhibitor of ubiquitin-like modifier activating enzyme 1 that catalyzes ubiquitin activation, the first step in the ubiquitylation cascade. Based on its preclinical efficacy and tolerability, TAK-243 has been advanced to phase I clinical trials in advanced malignancies. Nonetheless, the determinants of TAK-243 sensitivity remain largely unknown. Here, we conducted a genome-wide CRISPR/Cas9 knockout screen in acute myeloid leukemia (AML) cells in the presence of TAK-243 to identify genes essential for TAK-243 action. We identified BEN domain-containing protein 3 (BEND3), a transcriptional repressor and a regulator of chromatin organization, as the top gene whose knockout confers resistance to TAK-243 in vitro and in vivo. Knockout of BEND3 dampened TAK-243 effects on ubiquitylation, proteotoxic stress, and DNA damage response. BEND3 knockout upregulated the ATP-binding cassette efflux transporter breast cancer resistance protein (BCRP; ABCG2) and reduced the intracellular levelsof TAK-243. TAK-243 sensitivity correlated with BCRP expression in cancer cell lines of different origins. Moreover, chemical inhibition and genetic knockdown of BCRP sensitized intrinsically resistant high-BCRP cells to TAK-243. Thus, our data demonstrate that BEND3 regulates the expression of BCRP for which TAK-243 is a substrate. Moreover, BCRP expression could serve as a predictor of TAK-243 sensitivity.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Drug Resistance, Neoplasm , Enzyme Inhibitors , Gene Expression Regulation, Neoplastic , Leukemia, Myeloid, Acute , Neoplasm Proteins/metabolism , Pyrazoles , Pyrimidines , Repressor Proteins/metabolism , Sulfides , Sulfonamides , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP-Binding Cassette Transporters , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Genome , Humans , Leukemia, Myeloid, Acute/drug therapy , Male , Mice , Neoplasm Proteins/genetics , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Repressor Proteins/genetics , Sulfides/pharmacology , Sulfides/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use
16.
J Med Chem ; 63(17): 10061-10085, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32787083

ABSTRACT

There are currently no effective chemotherapeutic drugs approved for the treatment of diffuse intrinsic pontine glioma (DIPG), an aggressive pediatric cancer resident in the pons region of the brainstem. Radiation therapy is beneficial but not curative, with the condition being uniformly fatal. Analysis of the genomic landscape surrounding DIPG has revealed that activin receptor-like kinase-2 (ALK2) constitutes a potential target for therapeutic intervention given its dysregulation in the disease. We adopted an open science approach to develop a series of potent, selective, orally bioavailable, and brain-penetrant ALK2 inhibitors based on the lead compound LDN-214117. Modest structural changes to the C-3, C-4, and C-5 position substituents of the core pyridine ring afforded compounds M4K2009, M4K2117, and M4K2163, each with a superior potency, selectivity, and/or blood-brain barrier (BBB) penetration profile. Robust in vivo pharmacokinetic (PK) properties and tolerability mark these inhibitors as advanced preclinical compounds suitable for further development and evaluation in orthotopic models of DIPG.


Subject(s)
Activin Receptors, Type I/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Diffuse Intrinsic Pontine Glioma/drug therapy , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Drug Discovery , Female , HEK293 Cells , Humans , Male , Mice, SCID , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Rats, Sprague-Dawley , Structure-Activity Relationship
17.
J Med Chem ; 63(9): 4978-4996, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32369358

ABSTRACT

Diffuse intrinsic pontine glioma is an aggressive pediatric cancer for which no effective chemotherapeutic drugs exist. Analysis of the genomic landscape of this disease has led to the identification of the serine/threonine kinase ALK2 as a potential target for therapeutic intervention. In this work, we adopted an open science approach to develop a series of potent type I inhibitors of ALK2 which are orally bio-available and brain-penetrant. Initial efforts resulted in the discovery of M4K2009, an analogue of the previously reported ALK2 inhibitor LDN-214117. Although highly selective for ALK2 over the TGF-ßR1 receptor ALK5, M4K2009 is also moderately active against the hERG potassium channel. Varying the substituents of the trimethoxyphenyl moiety gave rise to an equipotent benzamide analogue M4K2149 with reduced off-target affinity for the ion channel. Additional modifications yielded 2-fluoro-6-methoxybenzamide derivatives (26a-c), which possess high inhibitory activity against ALK2, excellent selectivity, and superior pharmacokinetic profiles.


Subject(s)
Activin Receptors, Type I/antagonists & inhibitors , Benzamides/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Activin Receptors, Type I/genetics , Animals , Benzamides/chemical synthesis , Benzamides/pharmacokinetics , Caco-2 Cells , Cell Membrane Permeability/drug effects , Diffuse Intrinsic Pontine Glioma/drug therapy , Female , HEK293 Cells , Humans , Male , Mice, SCID , Microsomes, Liver/metabolism , Molecular Structure , Mutation , Piperazines/chemical synthesis , Piperazines/pharmacokinetics , Piperazines/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Structure-Activity Relationship
18.
Cancer Res ; 79(9): 2426-2434, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30890619

ABSTRACT

Medulloblastoma (MB) is a pediatric malignant brain tumor composed of four different subgroups (WNT, SHH, Group 3, Group 4), each of which are a unique biological entity with distinct clinico-pathological, molecular, and prognostic characteristics. Although risk stratification of patients with MB based on molecular features may offer personalized therapies, conventional subgroup identification methods take too long and are unable to deliver subgroup information intraoperatively. This limitation prevents subgroup-specific adjustment of the extent or the aggressiveness of the tumor resection by the neurosurgeon. In this study, we investigated the potential of rapid tumor characterization with Picosecond infrared laser desorption mass spectrometry (PIRL-MS) for MB subgroup classification based on small molecule signatures. One hundred and thirteen ex vivo MB tumors from a local tissue bank were subjected to 10- to 15-second PIRL-MS data collection and principal component analysis with linear discriminant analysis (PCA-LDA). The MB subgroup model was established from 72 independent tumors; the remaining 41 de-identified unknown tumors were subjected to multiple, 10-second PIRL-MS samplings and real-time PCA-LDA analysis using the above model. The resultant 124 PIRL-MS spectra from each sampling event, after the application of a 95% PCA-LDA prediction probability threshold, yielded a 98.9% correct classification rate. Post-ablation histopathologic analysis suggested that intratumoral heterogeneity or sample damage prior to PIRL-MS sampling at the site of laser ablation was able to explain failed classifications. Therefore, upon translation, 10-seconds of PIRL-MS sampling is sufficient to allow personalized, subgroup-specific treatment of MB during surgery. SIGNIFICANCE: This study demonstrates that laser-extracted lipids allow immediate grading of medulloblastoma tumors into prognostically important subgroups in 10 seconds, providing medulloblastoma pathology in an actionable manner during surgery.


Subject(s)
Cerebellar Neoplasms/classification , Cerebellar Neoplasms/pathology , Intraoperative Care , Medulloblastoma/classification , Medulloblastoma/pathology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Cerebellar Neoplasms/surgery , Humans , Medulloblastoma/surgery
19.
Bioconjug Chem ; 29(6): 2009-2020, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29734804

ABSTRACT

Nanoparticles provide a unique opportunity to explore the benefits of selective distribution and release of cancer therapeutics at sites of disease through varying particle sizes and compositions that exploit the enhanced permeability of tumor-associated blood vessels. Though delivery of larger as opposed to smaller and/or actively transported molecules to the brain is prima facie a challenging endeavor, we wondered whether nanoparticles could improve the therapeutic index of existing drugs for use in treating brain tumors via these vascular effects. We therefore selected a family of nanoparticles composed of cabazitaxel-carboxymethyl cellulose amphiphilic polymers to investigate the potential for delivering a brain-penetrant taxane to intracranial brain tumors in mice. Among a small set of nanoparticle formulations, we found evidence for nanoparticle accumulation in the brain, and one such formulation demonstrated activity in an orthotopic model of glioma, suggesting that such nanoparticles could be useful for the treatment of glioma and brain metastases of other tumor types.


Subject(s)
Antineoplastic Agents/administration & dosage , Brain Neoplasms/drug therapy , Carboxymethylcellulose Sodium/chemistry , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Taxoids/administration & dosage , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Brain/drug effects , Brain/metabolism , Brain Neoplasms/metabolism , Cell Line, Tumor , Drug Delivery Systems , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Nanoparticles/ultrastructure , Taxoids/chemistry , Taxoids/pharmacokinetics , Taxoids/therapeutic use
20.
Chem Sci ; 8(9): 6508-6519, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28989676

ABSTRACT

Medulloblastoma (MB), the most prevalent malignant childhood brain tumour, consists of at least 4 distinct subgroups each of which possesses a unique survival rate and response to treatment. To rapidly determine MB subgroup affiliation in a manner that would be actionable during surgery, we subjected murine xenograft tumours of two MB subgroups (SHH and Group 3) to Mass Spectrometry (MS) profiling using a handheld Picosecond InfraRed Laser (PIRL) desorption probe and interface developed by our group. This platform provides real time MS profiles of tissue based on laser desorbed lipids and small molecules with only 5-10 seconds of sampling. PIRL-MS analysis of ex vivo MB tumours offered a 98% success rate in subgroup determination, observed over 194 PIRL-MS datasets collected from 19 independent tumours (∼10 repetitions each) utilizing 6 different established MB cell lines. Robustness was verified by a 5%-leave-out-and-remodel test. PIRL ablated tissue material was collected on a filter paper and subjected to high resolution LC-MS to provide ion identity assignments for the m/z values that contribute most to the statistical discrimination between SHH and Group 3 MB. Based on this analysis, rapid classification of MB with PIRL-MS utilizes a variety of fatty acid chains, glycerophosphates, glycerophosphoglycerols and glycerophosphocholines rapidly extracted from the tumours. In this work, we provide evidence that 5-10 seconds of sampling from ex vivo MB tissue with PIRL-MS can allow robust tumour subgroup classification, and have identified several biomarker ions responsible for the statistical discrimination of MB Group 3 and the SHH subgroup. The existing PIRL-MS platform used herein offers capabilities for future in vivo use.

SELECTION OF CITATIONS
SEARCH DETAIL
...