Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 106(4): 041803, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21405320

ABSTRACT

We report a measurement of the positive muon lifetime to a precision of 1.0 ppm; it is the most precise particle lifetime ever measured. The experiment used a time-structured, low-energy muon beam and a segmented plastic scintillator array to record more than 2×10(12) decays. Two different stopping target configurations were employed in independent data-taking periods. The combined results give τ(µ(+)) (MuLan)=2 196 980.3(2.2) ps, more than 15 times as precise as any previous experiment. The muon lifetime gives the most precise value for the Fermi constant: G(F) (MuLan)=1.166 378 8(7)×10(-5) GeV(-2) (0.6 ppm). It is also used to extract the µ(-)p singlet capture rate, which determines the proton's weak induced pseudoscalar coupling g(P).

2.
Phys Rev Lett ; 102(17): 172002, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19518773

ABSTRACT

We report new measurements of inclusive pi production from frozen-spin HD for polarized photon beams covering the Delta(1232) resonance. These provide data simultaneously on both H and D with nearly complete angular distributions of the spin-difference cross sections entering the Gerasimov-Drell-Hearn (GDH) sum rule. Recent results from Mainz and Bonn exceed the GDH prediction for the proton by 22 microb, suggesting as yet unmeasured high-energy components. Our pi0 data reveal a different angular dependence than assumed in Mainz analyses and integrate to a value that is 18 microb lower, suggesting a more rapid convergence. Our results for deuterium are somewhat lower than published data, considerably more precise, and generally lower than available calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...