Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ Comput Sci ; 10: e1919, 2024.
Article in English | MEDLINE | ID: mdl-38435605

ABSTRACT

It is a known fact that gastrointestinal diseases are extremely common among the public. The most common of these diseases are gastritis, reflux, and dyspepsia. Since the symptoms of these diseases are similar, diagnosis can often be confused. Therefore, it is of great importance to make these diagnoses faster and more accurate by using computer-aided systems. Therefore, in this article, a new artificial intelligence-based hybrid method was developed to classify images with high accuracy of anatomical landmarks that cause gastrointestinal diseases, pathological findings and polyps removed during endoscopy, which usually cause cancer. In the proposed method, firstly trained InceptionV3 and MobileNetV2 architectures are used and feature extraction is performed with these two architectures. Then, the features obtained from InceptionV3 and MobileNetV2 architectures are merged. Thanks to this merging process, different features belonging to the same images were brought together. However, these features contain irrelevant and redundant features that may have a negative impact on classification performance. Therefore, Dandelion Optimizer (DO), one of the most recent metaheuristic optimization algorithms, was used as a feature selector to select the appropriate features to improve the classification performance and support vector machine (SVM) was used as a classifier. In the experimental study, the proposed method was also compared with different convolutional neural network (CNN) models and it was found that the proposed method achieved better results. The accuracy value obtained in the proposed model is 93.88%.

2.
Neural Comput Appl ; 35(14): 10311-10328, 2023.
Article in English | MEDLINE | ID: mdl-36714074

ABSTRACT

COVID-19, a novel virus from the coronavirus family, broke out in Wuhan city of China and spread all over the world, killing more than 5.5 million people. The speed of spreading is still critical as an infectious disease, and it causes more and more deaths each passing day. COVID-19 pandemic has resulted in many different psychological effects on people's mental states, such as anxiety, fear, and similar complex feelings. Millions of people worldwide have shared their opinions on COVID-19 on several social media websites, particularly on Twitter. Therefore, it is likely to minimize the negative psychological impact of the disease on society by obtaining individuals' views on COVID-19 from social media platforms, making deductions from their statements, and identifying negative statements about the disease. In this respect, Twitter sentiment analysis (TSA), a recently popular research topic, is used to perform data analysis on social media platforms such as Twitter and reach certain conclusions. The present study, too, proposes TSA using convolutional neural network optimized via arithmetic optimization algorithm (TSA-CNN-AOA) approach. Firstly, using a designed API, 173,638 tweets about COVID-19 were extracted from Twitter between July 25, 2020, and August 30, 2020 to create a database. Later, significant information was extracted from this database using FastText Skip-gram. The proposed approach benefits from a designed convolutional neural network (CNN) model as a feature extractor. Thanks to arithmetic optimization algorithm (AOA), a feature selection process was also applied to the features obtained from CNN. Later, K-nearest neighbors (KNN), support vector machine, and decision tree were used to classify tweets as positive, negative, and neutral. In order to measure the TSA performance of the proposed method, it was compared with different approaches. The results demonstrated that TSA-CNN-AOA (KNN) achieved the highest tweet classification performance with an accuracy rate of 95.098. It is evident from the experimental studies that the proposed approach displayed a much higher TSA performance compared to other similar approaches in the existing literature.

3.
Med Biol Eng Comput ; 60(6): 1595-1612, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35396625

ABSTRACT

Coronavirus disease-2019 (COVID-19) is a new types of coronavirus which have turned into a pandemic within a short time. Reverse transcription-polymerase chain reaction (RT-PCR) test is used for the diagnosis of COVID-19 in national healthcare centers. Because the number of PCR test kits is often limited, it is sometimes difficult to diagnose the disease at an early stage. However, X-ray technology is accessible nearly all over the world, and it succeeds in detecting symptoms of COVID-19 more successfully. Another disease which affects people's lives to a great extent is colorectal cancer. Tissue microarray (TMA) is a technological method which is widely used for its high performance in the analysis of colorectal cancer. Computer-assisted approaches which can classify colorectal cancer in TMA images are also needed. In this respect, the present study proposes a convolutional neural network (CNN) classification approach with optimized parameters using gradient-based optimizer (GBO) algorithm. Thanks to the proposed approach, COVID-19, normal, and viral pneumonia in various chest X-ray images can be classified accurately. Additionally, other types such as epithelial and stromal regions in epidermal growth factor receptor (EFGR) colon in TMAs can also be classified. The proposed approach was called COVID-CCD-Net. AlexNet, DarkNet-19, Inception-v3, MobileNet, ResNet-18, and ShuffleNet architectures were used in COVID-CCD-Net, and the hyperparameters of this architecture was optimized for the proposed approach. Two different medical image classification datasets, namely, COVID-19 and Epistroma, were used in the present study. The experimental findings demonstrated that proposed approach increased the classification performance of the non-optimized CNN architectures significantly and displayed a very high classification performance even in very low value of epoch.


Subject(s)
COVID-19 , Colonic Neoplasms , Colorectal Neoplasms , Deep Learning , COVID-19/diagnosis , Colonic Neoplasms/diagnosis , Humans , Neural Networks, Computer , SARS-CoV-2 , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...