Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 90(2): 664-672, 2023 08.
Article in English | MEDLINE | ID: mdl-37094025

ABSTRACT

PURPOSE: Hyperpolarized [1-13 C]pyruvate MRI is an emerging clinical tool for metabolic imaging. It has the potential for absolute quantitative metabolic imaging. However, the method itself is not quantitative, limiting comparison of images across both time and between individuals. Here, we propose a simple signal normalization to the whole-body oxidative metabolism to overcome this limitation. THEORY AND METHODS: A simple extension of the model-free ratiometric analysis of hyperpolarized [1-13 C]pyruvate MRI is presented, using the expired 13 CO2 in breath for normalization. The proposed framework was investigated in two porcine cohorts (N = 11) subjected to local renal hypoperfusion defects and subsequent [1-13 C]pyruvate MRI. A breath sample was taken before the [1-13 C]pyruvate injection and 5 min after. The raw MR signal from both the healthy and intervened kidney in the two cohorts was normalized using the 13 CO2 in the expired air. RESULTS: 13 CO2 content in the expired air was significantly different between the two cohorts. Normalization to this reduced the coefficients of variance in the aerobic metabolic sensitive pathways by 25% for the alanine/pyruvate ratio, and numerical changes were observed in the bicarbonate/pyruvate ratio. The lactate/pyruvate ratio was largely unaltered (<2%). CONCLUSION: Our results indicate that normalizing the hyperpolarized 13 C-signal ratios by the 13 CO2 content in expired air can reduce variation as well as improve specificity of the method by normalizing the metabolic readout to the overall metabolic status of the individual. The method is a simple and cheap extension to the hyperpolarized 13 C exam.


Subject(s)
Carbon Dioxide , Magnetic Resonance Imaging , Animals , Swine , Magnetic Resonance Imaging/methods , Pyruvic Acid/metabolism , Kidney/diagnostic imaging , Kidney/metabolism , Carbon Isotopes/metabolism
2.
Magn Reson Med ; 90(2): 655-663, 2023 08.
Article in English | MEDLINE | ID: mdl-36971340

ABSTRACT

PURPOSE: Ischemic injury in the kidney is a common pathophysiological event associated with both acute kidney injury and chronic kidney disease; however, regional ischemia-reperfusion as seen in thromboembolic renal disease is often undetectable and thus subclinical. Here, we assessed the metabolic alterations following subclinical focal ischemia-reperfusion injury with hyperpolarized [1-13 C]pyruvate MRI in a porcine model. METHODS: Five pigs were subjected to 60 min of focal kidney ischemia. After 90 min of reperfusion, a multiparametric proton MRI protocol was performed on a clinical 3T scanner system. Metabolism was evaluated using 13 C MRI following infusion of hyperpolarized [1-13 C]pyruvate. Ratios of pyruvate to its detectable metabolites (lactate, bicarbonate, and alanine) were used to quantify metabolism. RESULTS: The focal ischemia-reperfusion injury resulted in injured areas with a mean size of 0.971 cm3 (±1.019). Compared with the contralateral kidney, the injured areas demonstrated restricted diffusion (1269 ± 83.59 × 10-6 mm2 /s vs. 1530 ± 52.73 × 10-6 mm2 /s; p = 0.006) and decreased perfusion (158.8 ± 29.4 mL/100 mL/min vs. 274 ± 63.1 mL/100 mL/min; p = 0.014). In the metabolic assessment, the injured areas displayed increased lactate/pyruvate ratios compared with the entire ipsilateral and the contralateral kidney (0.35 ± 0.13 vs. 0.27 ± 0.1 vs. 0.25 ± 0.1; p = 0.0086). Alanine/pyruvate ratio was unaltered, and we were unable to quantify bicarbonate due to low signal. CONCLUSION: MRI with hyperpolarized [1-13 C]pyruvate in a clinical setup is capable of detecting the acute, subtle, focal metabolic changes following ischemia. This may prove to be a valuable future addition to the renal MRI suite.


Subject(s)
Pyruvic Acid , Reperfusion Injury , Animals , Swine , Pyruvic Acid/metabolism , Bicarbonates/metabolism , Kidney/diagnostic imaging , Kidney/metabolism , Magnetic Resonance Imaging/methods , Reperfusion Injury/diagnostic imaging , Lactic Acid/metabolism , Alanine/metabolism
3.
Magn Reson Med ; 84(5): 2645-2655, 2020 11.
Article in English | MEDLINE | ID: mdl-32557782

ABSTRACT

PURPOSE: Normothermic perfusion is an emerging strategy for donor organ preservation and therapy, incited by the high worldwide demand for organs for transplantation. Hyperpolarized MRI and MRS using [1-13 C]pyruvate and other 13 C-labeled molecules pose a novel way to acquire highly detailed information about metabolism and function in a noninvasive manner. This study investigates the use of this methodology as a means to study and monitor the state of ex vivo perfused porcine kidneys, in the context of kidney graft preservation research. METHODS: Kidneys from four 40-kg Danish domestic pigs were perfused ex vivo with whole blood under normothermic conditions, using an MR-compatible perfusion system. Kidneys were investigated using 1 H MRI as well as hyperpolarized [1-13 C]pyruvate MRI and MRS. Using the acquired anatomical, functional and metabolic data, the state of the ex vivo perfused porcine kidney could be quantified. RESULTS: Four kidneys were successfully perfused for 120 minutes and verified using a DCE perfusion experiment. Renal metabolism was examined using hyperpolarized [1-13 C]pyruvate MRI and MRS, and displayed an apparent reduction in pyruvate turnover compared with the usual case in vivo. Perfusion and blood gas parameters were in the normal ex vivo range. CONCLUSION: This study demonstrates the ability to monitor ex vivo graft metabolism and function in a large animal model, resembling human renal physiology. The ability of hyperpolarized MRI and MRS to directly compare the metabolic state of an organ in vivo and ex vivo, in combination with the simple MR implementation of normothermic perfusion, renders this methodology a powerful future tool for graft preservation research.


Subject(s)
Kidney Transplantation , Pyruvic Acid , Animals , Kidney/diagnostic imaging , Kidney/surgery , Organ Preservation , Perfusion , Swine
4.
Physiol Rep ; 6(23): e13943, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30548433

ABSTRACT

Introduction of hyperpolarized magnetic resonance in preclinical studies and lately translation to patients provides new detailed in vivo information of metabolic flux in organs. Hyperpolarized magnetic resonance based on 13 C enriched pyruvate is performed without ionizing radiation and allows quantification of the pyruvate conversion products: alanine, lactate and bicarbonate in real time. Thus, this methodology has a promising potential for in vivo monitoring of energetic alterations in hepatic diseases. Using 13 C pyruvate, we investigated the metabolism in the porcine liver before and after intravenous injection of glucose. The overall mean lactate to pyruvate ratio increased significantly after the injection of glucose whereas the bicarbonate to pyruvate ratio was unaffected, representative of the levels of pyruvate entering the tricarboxylic acid cycle. Similarly, alanine to pyruvate ratio did not change. The increased lactate to pyruvate ratio over time showed an exponential correlation with insulin, glucagon and free fatty acids. Together, these data, obtained by hyperpolarized 13 C magnetic resonance spectroscopy and by blood sampling, indicate a hepatic metabolic shift in glucose utilization following a glucose challenge. Our findings demonstrate the capacity of hyperpolarized 13 C magnetic resonance spectroscopy for quantifying hepatic substrate metabolism in accordance with well-known physiological processes. When combined with concentration of blood insulin, glucagon and free fatty acids in the blood, the results indicate the potential of hyperpolarized magnetic resonance spectroscopy as a future clinical method for quantification of hepatic substrate metabolism.


Subject(s)
Liver Diseases/diagnostic imaging , Magnetic Resonance Imaging/methods , Pyruvic Acid/metabolism , Alanine/metabolism , Animals , Blood Glucose/metabolism , Citric Acid Cycle , Fatty Acids/blood , Female , Glucagon/blood , Insulin/blood , Lactic Acid/metabolism , Liver Diseases/metabolism , Swine
5.
Open Heart ; 3(1): e000346, 2016.
Article in English | MEDLINE | ID: mdl-27110375

ABSTRACT

OBJECTIVE: Microvascular obstruction (MVO) and intramyocardial haemorrhage (IMH) are known complications of myocardial ischaemia-reperfusion injury. Whereas MVO is an established marker for a poor clinical outcome, the clinical significance of IMH remains less well defined. Cardiovascular MR (CMR) and T2 weighted short tau inversion recovery (T2-STIR) imaging have been used to detect IMH and to explore its clinical importance. IMH is typically identified within the area-at-risk as a hypointense signal core on T2-STIR images. Because MVO will also appear as a hypointense signal core, T2-STIR imaging may not be an optimal method for assessing IMH. In this study, we sought to investigate the ability of T2-STIR to discriminate between MVO with IMH in a porcine myocardial ischaemia-reperfusion model that expressed MVO with and without IMH. METHOD: MVO with and without IMH (defined from both macroscopic evaluation and T1 weighted CMR) was produced in 13 pigs by a 65-min balloon occlusion of the mid left anterior descending artery, followed by reperfusion. Eight days after injury, all pigs underwent CMR imaging and subsequently the hearts were assessed by gross pathology. RESULTS: CMR identified MVO in all hearts. CMR and pathology showed that IMH was present in 6 of 13 (46%) infarcts. The sensitivity and specificity of T2-STIR hypointense signal core for identification of IMH was 100% and 29%, respectively. T2-values between hypointense signal core in the pigs with and without IMH were similar (60.4±3 ms vs 63.0±4 ms). CONCLUSIONS: T2-STIR did not allow identification of IMH in areas with MVO in a porcine model of myocardial ischaemic/reperfusion injury in the subacute phase of a reperfused myocardial infarction.

6.
Magn Reson Med ; 74(2): 558-63, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26014387

ABSTRACT

PURPOSE: Our aim was to determine the quantitative reproducibility of metabolic breakdown products in the kidney following intravenous injection of hyperpolarized [1-(13)C]pyruvate and secondly to investigate the metabolic effect on the pyruvate metabolism of oral sucrose load using dissolution dynamic nuclear polarization. By this technique, metabolic alterations in several different metabolic related diseases and their metabolic treatment responses can be accessed. METHODS: In four healthy pigs the lactate-to-pyruvate, alanine-to-pyruvate and bicarbonate-to-pyruvate ratio was measured following administration of regular cola and consecutive injections of hyperpolarized [1-(13)C]pyruvate four times within an hour. RESULTS: The overall lactate-to-pyruvate metabolic profile changed significantly over one hour following an acute sucrose load leading to a significant rise in blood glucose. CONCLUSION: The reproducibility of hyperpolarized magnetic resonance spectroscopy in the healthy pig kidney demonstrated a repeatability of more than 94% for all metabolites and, furthermore, that the pyruvate to lactate conversion and the blood glucose level is elevated following endogastric sucrose administration.


Subject(s)
Carbon-13 Magnetic Resonance Spectroscopy/methods , Dietary Sucrose/metabolism , Kidney/metabolism , Pyruvic Acid/pharmacokinetics , Sucrose/administration & dosage , Sucrose/pharmacokinetics , Administration, Oral , Animals , Carbonated Beverages , Female , Injections, Intravenous , Pyruvic Acid/administration & dosage , Radiopharmaceuticals/administration & dosage , Reproducibility of Results , Sensitivity and Specificity , Stomach , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...