Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Osteoarthritis Cartilage ; 28(5): 658-668, 2020 05.
Article in English | MEDLINE | ID: mdl-31734268

ABSTRACT

OBJECTIVE: Links between pain and joint degradation are poorly understood. We investigated the role of activation of Toll-like receptors (TLR) by cartilage metabolites in initiating and maintaining the inflammatory loop in OA causing joint destruction. METHODS: Synovial membrane explants (SMEs) were prepared from OA patients' synovial biopsies. SMEs were cultured for 10 days under following conditions: culture medium alone, OSM + TNFα, TLR2 agonist - Pam2CSK4, Pam3CSK4 or synthetic aggrecan 32-mer, TLR4 agonist - Lipid A. Release of pro-inflammatory and degradation biomarkers (acMMP3 and C3M) were measured by ELISA in conditioned media along with IL-6. Additionally, human cartilage was digested with ADAMTS-5, with or without the ADAMTS-5 inhibiting nanobody - M6495. Digested cartilage solution (DCS) and synthetic 32-mer were tested for TLR activation in SEAP based TLR reporter assay. RESULTS: Western blotting confirmed TLR2 and TLR4 in untreated OA synovial biopsies. TLR agonists showed an increase in release of biomarkers - acMMP3 and C3M in SME. Synthetic 32-mer showed no activation in the TLR reporter assay. ADAMTS-5 degraded cartilage fragments activated TLR2 in vitro. Adding M6495 - an anti-ADAMTS-5 inhibiting nanobody®, blocked ADAMTS-5-mediated DCS TLR2 activation. CONCLUSION: TLR2 is expressed in synovium of OA patients and their activation by synthetic ligands causes increased tissue turnover. ADAMTS-5-mediated cartilage degradation leads to release of aggrecan fragments which activates the TLR2 receptor in vitro. M6495 suppressed cartilage degradation by ADAMTS-5, limiting the activation of TLR2. In conclusion, pain and joint destruction may be linked to generation of ADAMTS-5 cartilage metabolites.


Subject(s)
ADAMTS5 Protein/metabolism , Cartilage, Articular/metabolism , Inflammation/metabolism , Synovial Membrane/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , ADAMTS5 Protein/drug effects , Aged , Aged, 80 and over , Aggrecans/metabolism , Blotting, Western , Cartilage, Articular/drug effects , Female , Humans , In Vitro Techniques , Interleukin-6/metabolism , Lipid A/pharmacology , Lipopeptides/pharmacology , Male , Matrix Metalloproteinase 3/drug effects , Matrix Metalloproteinase 3/metabolism , Middle Aged , Oligopeptides/pharmacology , Single-Domain Antibodies/pharmacology , Synovial Membrane/drug effects , Toll-Like Receptor 2/agonists , Toll-Like Receptor 4/agonists , Toll-Like Receptor 9/agonists , Tumor Necrosis Factor-alpha/pharmacology
2.
Clin Biochem ; 58: 37-43, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29702061

ABSTRACT

There is a lack of biochemical markers for non-invasive and objective assessment of symptomatic osteoarthritis (OA). Aggrecanase activity has been shown to be associated with joint deterioration and symptomatic disease through the degradation of extracellular matrix proteins, such as type III collagen. Our study aimed to identify and develop a novel biomarker by measuring an aggrecanase-mediated type III collagen neoepitope, and correlate levels of this biomarker with OA joint pain. Mass spectrometric analysis of purified type III collagen, degraded by the aggrecanase A Disintigrin and Metalloproteinase with Thrombospondin motif (ADAMTS), revealed a fragment generated by ADAMTS-1, -4 and -8. A monoclonal antibody was raised against the neoepitope of this fragment (COL3-ADAMTS) and a competitive ELISA was developed and tested; using serum samples from a cross-sectional cohort of patients with different degrees of knee OA (n = 261). The COL3/ADAMTS ELISA was technically robust and specific for the ADAMTS-1, -4 and -8 generated neoepitope. COL3/ADAMTS was released form cytokine stimulated synovial cultures, indicating a biologic link between the marker and synovium. In OA patients, serum COL3/ADAMTS was independently associated with pain scores (rho = -0.13-0.17, p < 0.05). This association was associated significantly with the presence of radiographic OA. Together, these data indicate that COL3/ADAMTS could be a marker of early osteoarthritis and the underlining pathology.


Subject(s)
Arthralgia/metabolism , Collagen Type III/metabolism , Endopeptidases/metabolism , Osteoarthritis, Knee/metabolism , Proteolysis , Synovial Fluid/metabolism , Aged , Arthralgia/pathology , Biomarkers/metabolism , Female , Humans , Male , Middle Aged , Osteoarthritis, Knee/pathology
3.
Scand J Rheumatol ; 45(2): 87-98, 2016.
Article in English | MEDLINE | ID: mdl-26484849

ABSTRACT

The disabling and painful disease osteoarthritis (OA) is the most common form of arthritis. Strong evidence suggests that a subpopulation of OA patients has a form of OA driven by inflammation. Consequently, understanding when inflammation is the driver of disease progression and which OA patients might benefit from anti-inflammatory treatment is a topic of intense research in the OA field. We have reviewed the current literature on OA, with an emphasis on inflammation in OA, biochemical markers of structural damage, and anti-inflammatory treatments for OA. The literature suggests that the OA patient population is diverse, consisting of several subpopulations, including one associated with inflammation. This inflammatory subpopulation may be identified by a combination of novel serological inflammatory biomarkers. Preliminary evidence from small clinical studies suggests that this subpopulation may benefit from anti-inflammatory treatment currently reserved for other inflammatory arthritides.


Subject(s)
Antirheumatic Agents/therapeutic use , Cartilage, Articular/immunology , Osteoarthritis/immunology , Precision Medicine , Synovial Membrane/immunology , Synovitis/immunology , Biomarkers , C-Reactive Protein/immunology , Cartilage, Articular/pathology , Humans , Inflammation/immunology , Magnetic Resonance Imaging , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Prognosis , Synovial Membrane/pathology , Synovitis/drug therapy , Synovitis/pathology
4.
Osteoarthritis Cartilage ; 24(1): 9-20, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26707988

ABSTRACT

OBJECTIVE: To review and summarize biomarker data published from April 2014 to May 2015 to provide insight to the ongoing work in the field of osteoarthritis (OA). Furthermore, to summarize the BIPED criteria and set it in context of the medical needs of 2015. METHODS: PubMed was used as searching machine: Time period 2014/04/01-2015/05/01, MeSH term [Biomarker] AND [Osteoarthritis], Language; English, Full text available. Reviews were excluded. Only papers describing protein based biomarkers measured in human body fluids from OA patients were included. RESULTS: Biomarkers of joint tissue turnover, cytokines, chemokines and peptide arrays were measured in different cohorts and studies. Amongst those were previously tested biomarkers such as osteocalcin, Carboxy-terminal cross-linked fragment of type II collagen (CTX-II) and cartilage oligomeric matrix protein (COMP). A majority of the biomarker were classified as I, B or B biomarkers according to the BIPED criteria. Work is continuing on testing biomarkers in OA. There is still a huge, unmet medical need to identify, test, validate and qualify novel and well-known biomarkers. A pre-requisite for this is better characterization and classification of biomarkers to their needs, which may not be reached before higher understanding of OA phenotypes has been gained. In addition, we provide some references to some recent guidelines from Food and Drug Administration (FDA) and European Medicines Agency (EMA) on qualification and usage of biomarkers for drug development and personalized medicine, which may provide value to the field.


Subject(s)
Biomarkers/metabolism , Osteoarthritis/metabolism , ADAM Proteins/metabolism , Cartilage Oligomeric Matrix Protein/metabolism , Chemokines/metabolism , Collagen Type II/metabolism , Collagen Type III/metabolism , Cytokines/metabolism , Humans , Matrix Metalloproteinases/metabolism , Osteocalcin/metabolism , Peptide Fragments/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...