Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(7): eadk3114, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38354244

ABSTRACT

Resonant inelastic x-ray scattering (RIXS) is a major method for investigation of electronic structure and dynamics, with applications ranging from basic atomic physics to materials science. In RIXS applied to inversion-symmetric systems, it has generally been accepted that strict parity selectivity applies in the sub-kilo-electron volt region. In contrast, we show that the parity selection rule is violated in the RIXS spectra of the free homonuclear diatomic O2 molecule. By analyzing the spectral dependence on scattering angle, we demonstrate that the violation is due to the phase difference in coherent scattering at the two atomic sites, in analogy with Young's double-slit experiment. The result also implies that the interpretation of x-ray absorption spectra for inversion symmetric molecules in this energy range must be revised.

2.
Phys Chem Chem Phys ; 23(32): 17166-17176, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34346432

ABSTRACT

As an example of symmetry breaking in NEXAFS spectra of protonated species we present a high resolution NEXAFS spectrum of protonated dinitrogen, the diazynium ion N2H+. By ab initio calculations we show that the spectrum consists of a superposition of two nitrogen 1s absorption spectra, each including a π* band, and a nitrogen 1s to H+ charge transfer band followed by a weak irregular progression of high energy excitations. Calculations also show that, as an effect of symmetry breaking by protonation, the π* transitions are separated by 0.23 eV, only slightly exceeding the difference in the corresponding dark (symmetry forbidden) and bright (symmetry allowed) core excitations of neutral N2. By DFT and calculations and vibrational analysis, the complex π* excitation band of N2H+ is understood as due to the superposition of the significantly different vibrational progressions of excitations from terminal and central nitrogen atoms, both leading to bent final state geometries. We also show computationally that the electronic structure of the charge transfer excitation smoothly depends on the nitrogen-proton distance and that there is a clear extension of the spectra going from infinity to close nitrogen-proton distance where fine structures show some, although not fully detailed, similarities. An interesting feature of partial localization of the nitrogen core orbitals, with a strong, non-monotonous, variation with nitrogen-proton distance could be highlighted. Specific effects could be unraveled when comparing molecular cation NEXAFS spectra, as represented by recently recorded spectra of N2+ and CO+, and spectra of protonated molecules as represented here by the N2H+ ion. Both types containing rich physical effects not represented in NEXAFS of neutral molecules because of the positive charge, whereas protonation also breaks the symmetry. The effect of the protonation on dinitrogen can be separated in charge, which extends the high-energy part of the spectrum, and symmetry-breaking, which is most clearly seen in the low-energy π* transition.

3.
Phys Chem Chem Phys ; 22(28): 16215-16223, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32643725

ABSTRACT

We present and analyze high resolution near edge X-ray absorption fine structure (NEXAFS) spectra of CO+ at the carbon and oxygen K-edges. The spectra show a wealth of features that appear very differently at the two K-edges. The analysis of these features can be divided into three parts; (i) repopulation transition to the open shell orbital - here the C(1s) or O(1s) to 5σ transition, where the normal core hole state is reached from a different initial state and different interaction than in X-ray photoelectron spectroscopy; (ii) spin coupled split valence bands corresponding to C(1s) or O(1s) to π* transitions; (iii) remainder weak and long progressions towards the double ionization potentials containing a manifold of peaks. These parts, none of which has correspondence in NEXAFS spectra of neutral molecules, are dictated by the localization of the singly occupied 5σ orbital, adding a dimension of chemistry to the ionic NEXAFS technique.

SELECTION OF CITATIONS
SEARCH DETAIL
...