Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 286: 119284, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35337506

ABSTRACT

Alginate has been used for decades for cell encapsulation. Cellulose nanofibrils (CNF) from tunicates are desirable in biomedicine due to high molecular weight, purity, crystallinity, and sustainable production. We prepared microbeads of 400-600 µm of alginate and tunicate CNF. Greater size, dispersity and aspect ratio were observed in microbeads with higher fractions of CNF. CNF content in Ca-crosslinked alginate microbeads decreased stability upon saline exposure, whereas crosslinking with calcium (50 mM) and barium (1 mM) yielded stable microbeads. The Young's moduli of gel cylinders decreased when exchanging alginate with CNF, and slightly increased permeability to dextran was observed in microbeads containing CNF. Encapsulation of MC3T3 cells revealed high cell viability after encapsulation (83.6 ± 0.4%) in beads of alginate and CNF. NHDFs showed lower viability but optimizing mixing and production techniques of microbeads increased cell viability (from 66.2 ± 5.3% to 72.7 ± 7.5%).


Subject(s)
Alginates , Urochordata , Animals , Cell Encapsulation , Cellulose/pharmacology , Microspheres
2.
Acta Biomater ; 137: 172-185, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34634509

ABSTRACT

Cell encapsulation in alginate microbeads is a promising approach to provide immune isolation in cell therapy without immunosuppression. However, the efficacy is hampered by pericapsular fibrotic overgrowth (PFO), causing encapsulated cells to lose function. Stability of the microbeads is important to maintain immune isolation in the long-term. Here, we report alginate microbeads with minimal PFO in immunocompetent C57BL/6JRj mice. Microbead formulations included either alginate with an intermediate (47 %) guluronate (G) content (IntG) or sulfated alginate (SA), gelled in Ca2+/Ba2+ or Sr2+. A screening panel of eleven microbead formulations were evaluated for PFO, yielding multiple promising microbeads. Two candidate formulations were evaluated for 112 days in vivo, exhibiting maintained stability and minimal PFO. Microbeads investigated in a human whole blood assay revealed low cytokine and complement responses, while SA microbeads activated coagulation. Protein deposition on microbeads explanted from mice investigated by confocal laser scanning microscopy (CLSM) showed minimal deposition of complement C3. Fibrinogen was positively associated with PFO, with a high deposition on microbeads of high G (68 %) alginate compared to IntG and SA microbeads. Overall, stable microbeads containing IntG or SA may serve in long-term therapeutic applications of cell encapsulation. STATEMENT OF SIGNIFICANCE: Alginate-based hydrogels in the format of micrometer size beads is a promising approach for the immunoisolation of cells in cell therapy. Clinical trials in type 1 diabetes have so far had limited success due to fibrotic responses that hinder the diffusion of nutrients and oxygen to the encapsulated cells, resulting in graft failure. In this study, minimal fibrotic response towards micrometer size alginate beads was achieved by chemical modification of alginate with sulfate groups. Also, the use of alginate with intermediate guluronic acid content resulted in minimally fibrotic microbeads. Fibrinogen deposition was revealed to be a good indicator of fibrosis. This study points to both new microsphere developments and novel insight in the mechanisms behind the fibrotic responses.


Subject(s)
Alginates , Sulfates , Alginates/pharmacology , Animals , Fibrosis , Glucuronic Acid , Hexuronic Acids , Mice , Mice, Inbred C57BL , Microspheres
3.
Carbohydr Polym ; 276: 118804, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34823810

ABSTRACT

This work explores the largely unknown surface microstructure and elastic modulus of soft calcium-alginate hydrogels (E = 100-4500 Pa) in their hydrated state by atomic force microscopy (AFM) in quantitative imaging mode. Alginate concentration influenced the surface topography with surface roughness measured to be 101 ± 6 nm and 57 ± 1 nm for 0.5 and 2.0% (w/v) alginate, respectively. The calculated range of pore sizes increased with decreasing alginate concentration, with radii smaller than 360 nm, 570 nm and 1230 nm for 2.0%, 1.0% and 0.5% alginate, respectively. Small changes in calcium concentration (from 20 to 25 mM, 1.5% alginate) did not induce changes in surface microstructure, although it increased the elastic modulus mean values and distribution. Introducing oxidized or peptide-grafted alginate in the gels resulted in rougher surfaces, larger pore sizes and lower elasticity than the respective hydrogels with no modified alginate.

4.
Front Bioeng Biotechnol ; 9: 816542, 2021.
Article in English | MEDLINE | ID: mdl-35308825

ABSTRACT

Intra-peritoneal placement of alginate encapsulated human induced pluripotent stem cell-derived hepatocytes (hPSC-Heps) represents a potential new bridging therapy for acute liver failure. One of the rate-limiting steps that needs to be overcome to make such a procedure more efficacious and safer is to reduce the accumulation of fibrotic tissue around the encapsulated cells to allow the free passage of relevant molecules in and out for metabolism. Novel chemical compositions of alginate afford the possibility of achieving this aim. We accordingly used sulfated alginate and demonstrated that this material reduced fibrotic overgrowth whilst not impeding the process of encapsulation nor cell function. Cumulatively, this suggests sulfated alginate could be a more suitable material to encapsulate hPSC-hepatocyte prior to human use.

SELECTION OF CITATIONS
SEARCH DETAIL
...