Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Prion ; 10(3): 251-61, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27282252

ABSTRACT

The mouse-adapted scrapie prion strain RML is one of the most widely used in prion research. The introduction of a cell culture-based assay of RML prions, the scrapie cell assay (SCA) allows more rapid and precise prion titration. A semi-automated version of this assay (ASCA) was applied to explore a range of conditions that might influence the infectivity and properties of RML prions. These include resistance to freeze-thaw procedures; stability to endogenous proteases in brain homogenate despite prolonged exposure to varying temperatures; distribution of infective material between pellet and supernatant after centrifugation, the effect of reducing agents and the influence of detergent additives on the efficiency of infection. Apparent infectivity is increased significantly by interaction with cationic detergents. Importantly, we have also elucidated the relationship between the duration of exposure of cells to RML prions and the transmission of infection. We established that the infection process following contact of cells with RML prions is rapid and followed an exponential time course, implying a single rate-limiting process.


Subject(s)
Prions/metabolism , Prions/pathogenicity , Scrapie/metabolism , Scrapie/transmission , Animals , Brain/metabolism , Brain/pathology , Cell Culture Techniques , Cell Line , Detergents/metabolism , Freezing , Kinetics , Mice , Prions/analysis , Reducing Agents/metabolism , Scrapie/pathology , Temperature
2.
Open Biol ; 5(12): 150165, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26631378

ABSTRACT

According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre 'synthetic' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20,000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved.


Subject(s)
Prions/metabolism , Animals , Mice , Prion Proteins , Prions/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
3.
Hum Mol Genet ; 23(19): 5102-8, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-24833721

ABSTRACT

Prion diseases (transmissible spongiform encephalopathies) are fatal neurodegenerative diseases, including Creutzfeldt-Jakob disease in humans, scrapie in sheep and bovine spongiform encephalopathy in cattle. While genome-wide association studies in human and quantitative trait loci mapping in mice have provided evidence for multiple susceptibility genes, few of these have been confirmed functionally. Phenotyping mouse models is generally the method of choice. However, this is not a feasible option where many novel genes, without pre-existing models, would need to be tested. We have therefore developed and applied an in-vitro screen to triage and prioritize candidate modifier genes for more detailed future studies which is faster, far more cost effective and ethical relative to mouse bioassay models. An in vitro prion bioassay, the scrapie cell assay, uses a neuroblastoma-derived cell line (PK1) that is susceptible to RML prions and able to propagate prions at high levels. In this study, we have generated stable gene silencing and/or overexpressing PK1-derived cell lines to test whether perturbation of 14 candidate genes affects prion susceptibility. While no consistent differences were determined for seven genes, highly significant changes were detected for Zbtb38, Sorcs1, Stmn2, Hspa13, Fkbp9, Actr10 and Plg, suggesting that they play key roles in the fundamental processes of prion propagation or clearance. Many neurodegenerative diseases involve the accumulation of misfolded protein aggregates and 'prion-like' seeding and spread has been implicated in their pathogenesis. It is therefore expected that some of these prion-modifier genes may be of wider relevance in neurodegeneration.


Subject(s)
Genetic Predisposition to Disease , Prion Diseases/genetics , Animals , Cell Line , Gene Expression , Gene Knockout Techniques , Genome-Wide Association Study , Humans , In Vitro Techniques , Mice , Quantitative Trait Loci , RNA Interference , Scrapie
SELECTION OF CITATIONS
SEARCH DETAIL
...