Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Immunol ; 15: 1253072, 2024.
Article in English | MEDLINE | ID: mdl-38846943

ABSTRACT

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest forms of cancer and peritoneal dissemination is one major cause for this poor prognosis. Exosomes have emerged as promising biomarkers for gastrointestinal cancers and can be found in all kinds of bodily fluids, also in peritoneal fluid (PF). This is a unique sample due to its closeness to gastrointestinal malignancies. The receptor tyrosine kinase-like orphan receptor 1 (ROR1) has been identified as a potential biomarker in human cancers and represents a promising target for an immunotherapy approach, which could be considered for future treatment strategies. Here we prospectively analyzed the exosomal surface protein ROR1 (exo-ROR1) in PF in localized PDAC patients (PER-) on the one hand and peritoneal disseminated tumor stages (PER+) on the other hand followed by the correlation of exo-ROR1 with clinical-pathological parameters. Methods: Exosomes were isolated from PF and plasma samples of non-cancerous (NC) (n = 15), chronic pancreatitis (CP) (n = 4), localized PDAC (PER-) (n = 18) and peritoneal disseminated PDAC (PER+) (n = 9) patients and the surface protein ROR1 was detected via FACS analysis. Additionally, soluble ROR1 in PF was analyzed. ROR1 expression in tissue was investigated using western blots (WB), qPCR, and immunohistochemistry (IHC). Exosome isolation was proven by Nano Tracking Analysis (NTA), WB, Transmission electron microscopy (TEM), and BCA protein assay. The results were correlated with clinical data and survival analysis was performed. Results: PDAC (PER+) patients have the highest exo-ROR1 values in PF and can be discriminated from NC (p <0.0001), PDAC (PER-) (p <0.0001), and CP (p = 0.0112). PDAC (PER-) can be discriminated from NC (p = 0.0003). In plasma, exo-ROR1 is not able to distinguish between the groups. While there is no expression of ROR1 in the exocrine pancreatic tissue, PDAC and peritoneal metastasis show expression of ROR1. High exo-ROR1 expression in PF is associated with lower overall survival (p = 0.0482). Conclusion: With exo-ROR1 in PF we found a promising diagnostic and prognostic biomarker possibly discriminating between NC, PDAC (PER-) and PDAC (PER+) and might shed light on future diagnostic and therapeutic concepts in PDAC.


Subject(s)
Ascitic Fluid , Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Exosomes , Pancreatic Neoplasms , Receptor Tyrosine Kinase-like Orphan Receptors , Humans , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Exosomes/metabolism , Male , Ascitic Fluid/metabolism , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Female , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Middle Aged , Biomarkers, Tumor/metabolism , Prognosis , Aged , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/mortality , Peritoneal Neoplasms/metabolism , Adult , Prospective Studies
2.
Mol Cancer ; 23(1): 28, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38308296

ABSTRACT

BACKGROUND: Current diagnostics for the detection of pancreato-biliary cancers (PBCs) need to be optimized. We therefore propose that methylated cell-free DNA (cfDNA) derived from non-invasive liquid biopsies serves as a novel biomarker with the ability to discriminate pancreato-biliary cancers from non-cancer pancreatitis patients. METHODS: Differentially methylated regions (DMRs) from plasma cfDNA between PBCs, pancreatitis and clinical control samples conditions were identified by next-generation sequencing after enrichment using methyl-binding domains and database searches to generate a discriminatory panel for a hybridization and capture assay with subsequent targeted high throughput sequencing. RESULTS: The hybridization and capture panel, covering around 74 kb in total, was applied to sequence a cohort of 25 PBCs, 25 pancreatitis patients, 25 clinical controls, and seven cases of Intraductal Papillary Mucinous Neoplasia (IPMN). An unbiased machine learning approach identified the 50 most discriminatory methylation markers for the discrimination of PBC from pancreatitis and controls resulting in an AUROC of 0.85 and 0.88 for a training (n = 45) and a validation (n = 37) data set, respectively. The panel was also able to distinguish high grade from low grade IPMN samples. CONCLUSIONS: We present a proof of concept for a methylation biomarker panel with better performance and improved discriminatory power than the current clinical marker CA19-9 for the discrimination of pancreato-biliary cancers from non-cancerous pancreatitis patients and clinical controls. This workflow might be used in future diagnostics for the detection of precancerous lesions, e.g. the identification of high grade IPMNs vs. low grade IPMNs.


Subject(s)
Carcinoma, Pancreatic Ductal , Cell-Free Nucleic Acids , Pancreatic Intraductal Neoplasms , Pancreatic Neoplasms , Pancreatitis , Humans , Biomarkers, Tumor/genetics , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatitis/diagnosis , Pancreatitis/genetics , Liquid Biopsy , Carcinoma, Pancreatic Ductal/pathology
3.
Cell Rep ; 42(6): 112637, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37300834

ABSTRACT

Inflammatory bowel diseases (IBDs) are a global health issue with an increasing incidence. Although the pathogenesis of IBDs has been investigated intensively, the etiology of IBDs remains enigmatic. Here, we report that interleukin-3 (Il-3)-deficient mice are more susceptible and exhibit increased intestinal inflammation during the early stage of experimental colitis. IL-3 is locally expressed in the colon by cells harboring a mesenchymal stem cell phenotype and protects by promoting the early recruitment of splenic neutrophils with high microbicidal capability into the colon. Mechanistically, IL-3-dependent neutrophil recruitment involves CCL5+ PD-1high LAG-3high T cells, STAT5, and CCL20 and is sustained by extramedullary splenic hematopoiesis. During acute colitis, Il-3-/- show, however, increased resistance to the disease as well as reduced intestinal inflammation. Altogether, this study deepens our understanding of IBD pathogenesis, identifies IL-3 as an orchestrator of intestinal inflammation, and reveals the spleen as an emergency reservoir for neutrophils during colonic inflammation.


Subject(s)
Colitis, Ulcerative , Interleukin-3 , Animals , Mice , Colitis/pathology , Colitis, Ulcerative/pathology , Colon/pathology , Dextran Sulfate , Disease Models, Animal , Inflammation/pathology , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/pathology , Mice, Inbred C57BL , Neutrophils/pathology , Spleen/pathology
4.
Front Immunol ; 14: 1140630, 2023.
Article in English | MEDLINE | ID: mdl-36911737

ABSTRACT

Rationale: Sepsis, a global health burden, is often complicated by viral infections leading to increased long-term morbidity and mortality. Interleukin-3 (IL-3) has been identified as an important mediator amplifying acute inflammation in sepsis; however, its function in the host response to viral infections during sepsis remains elusive. Objectives: To investigate the role of IL-3 during viral pneumonia in sepsis. Methods: We included septic patients from two different cohorts and used in vitro and in vivo assays. The obtained data were substantiated using a second model (SARS-CoV-2 infections). Measurements and main results: Low plasma IL-3 levels were associated with increased herpes simplex virus (HSV) airway infections in septic patients, resulting in reduced overall survival. Likewise, Il-3-deficient septic mice were more susceptible to pulmonary HSV-1 infection and exhibited higher pulmonary inflammation than control mice. Mechanistically, IL-3 increases innate antiviral immunity by promoting the recruitment of circulating plasmacytoid dendritic cells (pDCs) into the airways and by enhancing pDC-mediated T cell activation upon viral stimulation. Interestingly, the ability of IL-3 to improve adaptive immunity was confirmed in patients with SARS-CoV-2 infections. Conclusion: Our study identifies IL-3 as a predictive disease marker for viral reactivation in sepsis and reveals that IL-3 improves antiviral immunity by enhancing the recruitment and the function of pDCs.


Subject(s)
COVID-19 , Sepsis , Animals , Mice , Antiviral Agents , Dendritic Cells , Interleukin-3 , Lung , SARS-CoV-2 , T-Lymphocytes
5.
Cancers (Basel) ; 15(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36672313

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) ranks among the most fatal cancer diseases, widely accepted to have the most dismal prognoses. Although immunotherapy has broadly revolutionized cancer treatment, its value in PDAC appears to be relatively low. Exhibiting protumoral effects, monocytes have recently been proposed as potential targets of such immunotherapeutic regimens. However, to date, the body of evidence on monocytes' role in PDAC is scarce. Therefore, we analyzed monocytes in the peripheral blood of 58 PDAC patients prior to surgery and compared them to healthy individuals. PDAC patients showed increased levels of monocytes when compared to healthy controls In addition, patients with perineural infiltration demonstrated a higher percentage of monocytes compared to non-infiltrating tumors and PDAC G3 was associated with higher monocyte levels than PDAC G2. Patients with monocyte levels > 5% were found to have an 8.9-fold increased risk for a G3 and perineural infiltrated PDAC resulting in poorer survival compared to patients with <5% monocyte levels. Furthermore, PDAC patients showed increased expressions of CD86 and CD11c and decreased expressions of PD-L1 on monocytes compared to healthy individuals. Finally, levels of monocytes correlated positively with concentrations of IL-6 and TNF-α in plasma of PDAC patients. Based on our findings, we propose monocytes as a novel prognostic biomarker. Large-scale studies are needed to further decipher the role of monocytes in PDAC and investigate their potential as therapeutic targets.

6.
Int J Mol Sci ; 23(9)2022 May 05.
Article in English | MEDLINE | ID: mdl-35563553

ABSTRACT

Immunotherapy has become increasingly important in the treatment of colorectal cancer (CRC). Currently, CD73, also known as ecto-5'-nucleotidase (NT5E), has gained considerable interest as a potential therapeutic target. CD73 is one of the key enzymes catalyzing the conversion of extracellular ATP into adenosine, which in turn exerts potent immune suppressive effects. However, the role of CD73 expression on various cell types within the CRC tumor microenvironment remains unresolved. The expression of CD73 on various cell types has been described recently, but the role of CD73 on B-cells in CRC remains unclear. Therefore, we analyzed CD73 on B-cells, especially on tumor-infiltrating B-cells, in paired tumor and adjacent normal tissue samples from 62 eligible CRC patients. The highest expression of CD73 on tumor-infiltrating B-cells was identified on class-switched memory B-cells, followed by naive B-cells, whereas no CD73 expression was observed on plasmablasts. Clinicopathological correlation analysis revealed that higher CD73+ B-cells infiltration in the CRC tumors was associated with better overall survival. Moreover, metastasized patients showed a significantly decreased number of tumor-infiltrating CD73+ B-cells. Finally, neoadjuvant therapy correlated with reduced CD73+ B-cell numbers and CD73 expression on B-cells in the CRC tumors. As promising new immune therapies are being developed, the role of CD73+ B-cells and their subsets in the development of colorectal cancer should be further explored to find new therapeutic options.


Subject(s)
5'-Nucleotidase , Colorectal Neoplasms , 5'-Nucleotidase/metabolism , Antigens, CD20 , Cell Count , Humans , Immunotherapy , Tumor Microenvironment
7.
Front Immunol ; 13: 821480, 2022.
Article in English | MEDLINE | ID: mdl-35493510

ABSTRACT

Airway infection is a major cause of mortality worldwide. The identification of new mechanisms aiding in effective host immune response is therefore required. Here, we show that the specific depletion of the pleural immune cell compartment during bacterial pneumonia resulted in a reduced pulmonary immune response and increased mortality in mice. Bacterial airway infection provoked early pleural space (PS) inflammation characterized by innate response activator (IRA) B cell development and pleural large resident macrophage (LRM) necroptosis, the repopulation of LRMs being driven by cellular proliferation in situ. Necroptotic LRMs amplified PS inflammation by stimulating pleural Mincle-expressing macrophages whereas IRA B cells contributed partially to GM-CSF-induced PS inflammation. Upon pulmonary infection, the induction of PS inflammation resulted in reduced bacterial burden whereas the specific depletion of pleural resident macrophages led to increased mortality and bacterial burden and reduced pulmonary immunity. Moreover, mice in which B cells were unable to produce GM-CSF exhibited reduced CD103+ dendritic cells and reduced CD4+ T cell numbers in the draining lymph node. Altogether, our results describe a previously unrecognized mechanism of pleural space inflammation necessary for effective protection against bacterial airway infection.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Pneumonia, Bacterial , Animals , B-Lymphocytes , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Inflammation , Macrophages , Mice
8.
Nat Commun ; 12(1): 1112, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602937

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a worldwide health threat. In a prospective multicentric study, we identify IL-3 as an independent prognostic marker for the outcome during SARS-CoV-2 infections. Specifically, low plasma IL-3 levels is associated with increased severity, viral load, and mortality during SARS-CoV-2 infections. Patients with severe COVID-19 exhibit also reduced circulating plasmacytoid dendritic cells (pDCs) and low plasma IFNα and IFNλ levels when compared to non-severe COVID-19 patients. In a mouse model of pulmonary HSV-1 infection, treatment with recombinant IL-3 reduces viral load and mortality. Mechanistically, IL-3 increases innate antiviral immunity by promoting the recruitment of circulating pDCs into the airways by stimulating CXCL12 secretion from pulmonary CD123+ epithelial cells, both, in mice and in COVID-19 negative patients exhibiting pulmonary diseases. This study identifies IL-3 as a predictive disease marker for SARS-CoV-2 infections and as a potential therapeutic target for pulmunory viral infections.


Subject(s)
COVID-19/diagnosis , Interleukin-3/blood , Animals , COVID-19/mortality , Chemokine CXCL12/immunology , Dendritic Cells/cytology , Disease Models, Animal , Female , Germany , Humans , Immunity, Innate , Interferons/blood , Lung/immunology , Lung/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Prospective Studies , Severity of Illness Index , T-Lymphocytes/cytology , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...