Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Biophys J ; 123(10): 1167-1169, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38637988
2.
Chaos ; 34(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38377287

ABSTRACT

The famous doubling map (or dyadic transformation) is perhaps the simplest deterministic dynamical system exhibiting chaotic dynamics. It is a piecewise linear time-discrete map on the unit interval with a uniform slope larger than one, hence expanding, with a positive Lyapunov exponent and a uniform invariant density. If the slope is less than one, the map becomes contracting, the Lyapunov exponent is negative, and the density trivially collapses onto a fixed point. Sampling from these two different types of maps at each time step by randomly selecting the expanding one with probability p, and the contracting one with probability 1-p, gives a prototype of a random dynamical system. Here, we calculate the invariant density of this simple random map, as well as its position autocorrelation function, analytically and numerically under variation of p. We find that the map exhibits a non-trivial transition from fully chaotic to completely regular dynamics by generating a long-time anomalous dynamics at a critical sampling probability pc, defined by a zero Lyapunov exponent. This anomalous dynamics is characterized by an infinite invariant density, weak ergodicity breaking, and power-law correlation decay.

3.
PLoS Comput Biol ; 18(5): e1010089, 2022 05.
Article in English | MEDLINE | ID: mdl-35584137

ABSTRACT

The motility of neutrophils and their ability to sense and to react to chemoattractants in their environment are of central importance for the innate immunity. Neutrophils are guided towards sites of inflammation following the activation of G-protein coupled chemoattractant receptors such as CXCR2 whose signaling strongly depends on the activity of Ca2+ permeable TRPC6 channels. It is the aim of this study to analyze data sets obtained in vitro (murine neutrophils) and in vivo (zebrafish neutrophils) with a stochastic mathematical model to gain deeper insight into the underlying mechanisms. The model is based on the analysis of trajectories of individual neutrophils. Bayesian data analysis, including the covariances of positions for fractional Brownian motion as well as for exponentially and power-law tempered model variants, allows the estimation of parameters and model selection. Our model-based analysis reveals that wildtype neutrophils show pure superdiffusive fractional Brownian motion. This so-called anomalous dynamics is characterized by temporal long-range correlations for the movement into the direction of the chemotactic CXCL1 gradient. Pure superdiffusion is absent vertically to this gradient. This points to an asymmetric 'memory' of the migratory machinery, which is found both in vitro and in vivo. CXCR2 blockade and TRPC6-knockout cause tempering of temporal correlations in the chemotactic gradient. This can be interpreted as a progressive loss of memory, which leads to a marked reduction of chemotaxis and search efficiency of neutrophils. In summary, our findings indicate that spatially differential regulation of anomalous dynamics appears to play a central role in guiding efficient chemotactic behavior.


Subject(s)
Chemotaxis , Neutrophils , Animals , Bayes Theorem , Chemotactic Factors , Chemotaxis/physiology , Mice , TRPC6 Cation Channel , Zebrafish
4.
Entropy (Basel) ; 24(2)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35205496

ABSTRACT

This article investigates the spectral structure of the evolution operators associated with the statistical description of stochastic processes possessing finite propagation velocity. Generalized Poisson-Kac processes and Lévy walks are explicitly considered as paradigmatic examples of regular and anomalous dynamics. A generic spectral feature of these processes is the lower boundedness of the real part of the eigenvalue spectrum that corresponds to an upper limit of the spectral dispersion curve, physically expressing the relaxation rate of a disturbance as a function of the wave vector. We also analyze Generalized Poisson-Kac processes possessing a continuum of stochastic states parametrized with respect to the velocity. In this case, there is a critical value for the wave vector, above which the point spectrum ceases to exist, and the relaxation dynamics becomes controlled by the essential part of the spectrum. This model can be extended to the quantum case, and in fact, it represents a simple and clear example of a sub-quantum dynamics with hidden variables.

5.
Phys Rev Lett ; 122(17): 174101, 2019 May 03.
Article in English | MEDLINE | ID: mdl-31107078

ABSTRACT

Consider a chaotic dynamical system generating diffusionlike Brownian motion. Consider a second, nonchaotic system in which all particles localize. Let a particle experience a random combination of both systems by sampling between them in time. What type of diffusion is exhibited by this random dynamical system? We show that the resulting dynamics can generate anomalous diffusion, where in contrast to Brownian normal diffusion the mean square displacement of an ensemble of particles increases nonlinearly in time. Randomly mixing simple deterministic walks on the line, we find anomalous dynamics characterized by aging, weak ergodicity breaking, breaking of self-averaging, and infinite invariant densities. This result holds for general types of noise and for perturbing nonlinear dynamics in bifurcation scenarios.

6.
Phys Rev Lett ; 122(6): 064102, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30822076

ABSTRACT

Motivated by electronic transport in graphenelike structures, we study the diffusion of a classical point particle in Fermi potentials situated on a triangular lattice. We call this system a soft Lorentz gas, as the hard disks in the conventional periodic Lorentz gas are replaced by soft repulsive scatterers. A thorough computational analysis yields both normal and anomalous (super)diffusion with an extreme sensitivity on model parameters. This is due to an intricate interplay between trapped and ballistic periodic orbits, whose existence is characterized by tonguelike structures in parameter space. These results hold even for small softness, showing that diffusion in the paradigmatic hard Lorentz gas is not robust for realistic potentials, where we find an entirely different type of diffusion.

7.
Proc Natl Acad Sci U S A ; 115(22): 5714-5719, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29760057

ABSTRACT

How does the mathematical description of a system change in different reference frames? Galilei first addressed this fundamental question by formulating the famous principle of Galilean invariance. It prescribes that the equations of motion of closed systems remain the same in different inertial frames related by Galilean transformations, thus imposing strong constraints on the dynamical rules. However, real world systems are often described by coarse-grained models integrating complex internal and external interactions indistinguishably as friction and stochastic forces. Since Galilean invariance is then violated, there is seemingly no alternative principle to assess a priori the physical consistency of a given stochastic model in different inertial frames. Here, starting from the Kac-Zwanzig Hamiltonian model generating Brownian motion, we show how Galilean invariance is broken during the coarse-graining procedure when deriving stochastic equations. Our analysis leads to a set of rules characterizing systems in different inertial frames that have to be satisfied by general stochastic models, which we call "weak Galilean invariance." Several well-known stochastic processes are invariant in these terms, except the continuous-time random walk for which we derive the correct invariant description. Our results are particularly relevant for the modeling of biological systems, as they provide a theoretical principle to select physically consistent stochastic models before a validation against experimental data.

8.
Phys Rev E ; 94(1-1): 012104, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27575074

ABSTRACT

Lévy walks define a fundamental concept in random walk theory that allows one to model diffusive spreading faster than Brownian motion. They have many applications across different disciplines. However, so far the derivation of a diffusion equation for an n-dimensional correlated Lévy walk remained elusive. Starting from a fractional Klein-Kramers equation here we use a moment method combined with a Cattaneo approximation to derive a fractional diffusion equation for superdiffusive short-range auto-correlated Lévy walks in the large time limit, and we solve it. Our derivation discloses different dynamical mechanisms leading to correlated Lévy walk diffusion in terms of quantities that can be measured experimentally.

9.
Chaos ; 25(7): 073113, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26232964

ABSTRACT

Analytically tractable dynamical systems exhibiting a whole range of normal and anomalous deterministic diffusion are rare. Here, we introduce a simple non-chaotic model in terms of an interval exchange transformation suitably lifted onto the whole real line which preserves distances except at a countable set of points. This property, which leads to vanishing Lyapunov exponents, is designed to mimic diffusion in non-chaotic polygonal billiards that give rise to normal and anomalous diffusion in a fully deterministic setting. As these billiards are typically too complicated to be analyzed from first principles, simplified models are needed to identify the minimal ingredients generating the different transport regimes. For our model, which we call the slicer map, we calculate all its moments in position analytically under variation of a single control parameter. We show that the slicer map exhibits a transition from subdiffusion over normal diffusion to superdiffusion under parameter variation. Our results may help to understand the delicate parameter dependence of the type of diffusion generated by polygonal billiards. We argue that in different parameter regions the transport properties of our simple model match to different classes of known stochastic processes. This may shed light on difficulties to match diffusion in polygonal billiards to a single anomalous stochastic process.

10.
PLoS One ; 8(3): e59036, 2013.
Article in English | MEDLINE | ID: mdl-23520551

ABSTRACT

The movement of organisms is subject to a multitude of influences of widely varying character: from the bio-mechanics of the individual, over the interaction with the complex environment many animals live in, to evolutionary pressure and energy constraints. As the number of factors is large, it is very hard to build comprehensive movement models. Even when movement patterns in simple environments are analysed, the organisms can display very complex behaviours. While for largely undirected motion or long observation times the dynamics can sometimes be described by isotropic random walks, usually the directional persistence due to a preference to move forward has to be accounted for, e.g., by a correlated random walk. In this paper we generalise these descriptions to a model in terms of stochastic differential equations of Langevin type, which we use to analyse experimental search flight data of foraging bumblebees. Using parameter estimates we discuss the differences and similarities to correlated random walks. From simulations we generate artificial bumblebee trajectories which we use as a validation by comparing the generated ones to the experimental data.


Subject(s)
Flight, Animal/physiology , Hymenoptera/physiology , Models, Biological , Animals , Stochastic Processes
11.
Chaos ; 22(2): 023132, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22757539

ABSTRACT

A particle driven by deterministic chaos and moving in a spatially extended environment can exhibit normal diffusion, with its mean square displacement growing proportional to the time. Here, we consider the dependence of the diffusion coefficient on the size and the position of areas of phase space linking spatial regions ('holes') in a class of simple one-dimensional, periodically lifted maps. The parameter dependent diffusion coefficient can be obtained analytically via a Taylor-Green-Kubo formula in terms of a functional recursion relation. We find that the diffusion coefficient varies non-monotonically with the size of a hole and its position, which implies that a diffusion coefficient can increase by making the hole smaller. We derive analytic formulas for small holes in terms of periodic orbits covered by the holes. The asymptotic regimes that we observe show deviations from the standard stochastic random walk approximation. The escape rate of the corresponding open system is also calculated. The resulting parameter dependencies are compared with the ones for the diffusion coefficient and explained in terms of periodic orbits.

12.
Phys Rev Lett ; 108(9): 098103, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22463671

ABSTRACT

We analyze 3D flight paths of bumblebees searching for nectar in a laboratory experiment with and without predation risk from artificial spiders. For the flight velocities we find mixed probability distributions reflecting the access to the food sources while the threat posed by the spiders shows up only in the velocity correlations. The bumblebees thus adjust their flight patterns spatially to the environment and temporally to predation risk. Key information on response to environmental changes is contained in temporal correlation functions, as we explain by a simple emergent model.


Subject(s)
Bees/physiology , Feeding Behavior/physiology , Predatory Behavior/physiology , Animals , Flight, Animal/physiology , Normal Distribution , Risk Factors , Time Factors
13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 1): 041135, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22181115

ABSTRACT

We investigate three different methods for systematically approximating the diffusion coefficient of a deterministic random walk on the line that contains dynamical correlations that change irregularly under parameter variation. Capturing these correlations by incorporating higher-order terms, all schemes converge to the analytically exact result. Two of these methods are based on expanding the Taylor-Green-Kubo formula for diffusion, while the third method approximates Markov partitions and transition matrices by using a slight variation of the escape rate theory of chaotic diffusion. We check the practicability of the different methods by working them out analytically and numerically for a simple one-dimensional map, study their convergence, and critically discuss their usefulness in identifying a possible fractal instability of parameter-dependent diffusion, in the case of dynamics where exact results for the diffusion coefficient are not available.

14.
Proc Natl Acad Sci U S A ; 105(2): 459-63, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18182493

ABSTRACT

Cell movement--for example, during embryogenesis or tumor metastasis--is a complex dynamical process resulting from an intricate interplay of multiple components of the cellular migration machinery. At first sight, the paths of migrating cells resemble those of thermally driven Brownian particles. However, cell migration is an active biological process putting a characterization in terms of normal Brownian motion into question. By analyzing the trajectories of wild-type and mutated epithelial (transformed Madin-Darby canine kidney) cells, we show experimentally that anomalous dynamics characterizes cell migration. A superdiffusive increase of the mean squared displacement, non-Gaussian spatial probability distributions, and power-law decays of the velocity autocorrelations is the basis for this interpretation. Almost all results can be explained with a fractional Klein-Kramers equation allowing the quantitative classification of cell migration by a few parameters. Thereby, it discloses the influence and relative importance of individual components of the cellular migration apparatus to the behavior of the cell as a whole.


Subject(s)
Cell Movement , Animals , Bayes Theorem , Cell Line , Dogs , Epithelial Cells/metabolism , Extracellular Matrix/metabolism , Models, Biological , Models, Statistical , Models, Theoretical , Normal Distribution , Probability , Time Factors
15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(3 Pt 2): 036213, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17500775

ABSTRACT

An intermittent nonlinear map generating subdiffusion is investigated. Computer simulations show that the generalized diffusion coefficient of this map has a fractal, discontinuous dependence on control parameters. An amended continuous time random-walk theory well approximates the coarse behavior of this quantity in terms of a continuous function. This theory also reproduces a full suppression of the strength of diffusion, which occurs at the dynamical transition from normal to anomalous diffusion. Similarly, the probability density function of this map exhibits a nontrivial fine structure while its coarse functional form is governed by a time fractional diffusion equation. A more detailed understanding of the irregular structure of the generalized diffusion coefficient is provided by an anomalous Taylor-Green-Kubo formula establishing a relation to de Rham-type fractal functions.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(2 Pt 2): 026211, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12241271

ABSTRACT

We propose a flower-shaped billiard in order to study the irregular parameter dependence of chaotic normal diffusion. Our model is an open system consisting of periodically distributed obstacles in the shape of a flower, and it is strongly chaotic for almost all parameter values. We compute the parameter dependent diffusion coefficient of this model from computer simulations and analyze its functional form using different schemes, all generalizing the simple random walk approximation of Machta and Zwanzig. The improved methods we use are based either on heuristic higher-order corrections to the simple random walk model, on lattice gas simulation methods, or they start from a suitable Green-Kubo formula for diffusion. We show that dynamical correlations, or memory effects, are of crucial importance in reproducing the precise parameter dependence of the diffusion coefficent.

SELECTION OF CITATIONS
SEARCH DETAIL
...