Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 9: 398, 2018.
Article in English | MEDLINE | ID: mdl-30319687

ABSTRACT

Actin is not only one of the most abundant proteins in eukaryotic cells, but also one of the most versatile. In addition to its familiar involvement in enabling contraction and establishing cellular motility and scaffolding in the cytosol, actin has well-documented roles in a variety of processes within the confines of the nucleus, such as transcriptional regulation and DNA repair. Interestingly, monomeric actin as well as actin-related proteins (Arps) are found as stoichiometric subunits of a variety of chromatin remodeling complexes and histone acetyltransferases, raising the question of precisely what roles they serve in these contexts. Actin and Arps are present in unique combinations in chromatin modifiers, helping to establish structural integrity of the complex and enabling a wide range of functions, such as recruiting the complex to nucleosomes to facilitate chromatin remodeling and promoting ATPase activity of the catalytic subunit. Actin and Arps are also thought to help modulate chromatin dynamics and maintain higher-order chromatin structure. Moreover, the presence of actin and Arps in several chromatin modifiers is necessary for promoting genomic integrity and an effective DNA damage response. In this review, we discuss the involvement of actin and Arps in these nuclear complexes that control chromatin remodeling and histone modifications, while also considering avenues for future study to further shed light on their functional importance.

2.
Sci China Life Sci ; 60(10): 1065-1076, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29098631

ABSTRACT

DNA is constantly exposed to a wide array of genotoxic agents, generating a variety of forms of DNA damage. DNA-protein crosslinks (DPCs)-the covalent linkage of proteins with a DNA strand-are one of the most deleterious and understudied forms of DNA damage, posing as steric blockades to transcription and replication. If not properly repaired, these lesions can lead to mutations, genomic instability, and cell death. DPCs can be induced endogenously or through environmental carcinogens and chemotherapeutic agents. Endogenously, DPCs are commonly derived through reactions with aldehydes, as well as through trapping of various enzymatic intermediates onto the DNA. Proteolytic cleavage of the protein moiety of a DPC is a general strategy for removing the lesion. This can be accomplished through a DPC-specific protease and and/or proteasome-mediated degradation. Nucleotide excision repair and homologous recombination are each involved in repairing DPCs, with their respective roles likely dependent on the nature and size of the adduct. The Fanconi anemia pathway may also have a role in processing DPC repair intermediates. In this review, we discuss how these lesions are formed, strategies and mechanisms for their removal, and diseases associated with defective DPC repair.


Subject(s)
DNA Damage , DNA Repair , DNA-Binding Proteins/metabolism , DNA/metabolism , Animals , DNA/genetics , DNA Replication , DNA-Binding Proteins/genetics , Homologous Recombination , Humans , Models, Genetic , Proteolysis
3.
J Biol Chem ; 292(49): 20184-20195, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29021208

ABSTRACT

In response to DNA cross-linking damage, the Fanconi anemia (FA) core complex activates the FA pathway by monoubiquitinating Fanconi anemia complementation group D2 (FANCD2) for the initiation of the nucleolytic processing of the DNA cross-links and stabilization of stalled replication forks. Given that all the classic FA proteins coordinately monoubiquitinate FANCD2, it is unclear why losses of individual classic FA genes yield varying cellular sensitivities to cross-linking damage. To address this question, we generated cellular knock-out models of FA core complex components and FANCD2 and found that FANCD2-null mutants display higher levels of spontaneous chromosomal damage and hypersensitivity to replication-blocking lesions than Fanconi anemia complementation group L (FANCL)-null mutants, suggesting that FANCD2 provides a basal level of DNA protection countering endogenous lesions in the absence of monoubiquitination. FANCD2's ubiquitination-independent function is likely involved in optimized recruitment of nucleolytic activities for the processing and protection of stressed replication forks. Our results reveal that FANCD2 has a ubiquitination-independent role in countering endogenous levels of replication stress, a function that is critical for the maintenance of genomic stability.


Subject(s)
DNA Damage/genetics , DNA Replication/genetics , Fanconi Anemia Complementation Group D2 Protein/genetics , Stress, Physiological , Fanconi Anemia Complementation Group D2 Protein/physiology , Gene Knock-In Techniques , Gene Knockdown Techniques , Genomic Instability , HeLa Cells , Humans , Ubiquitination
4.
BMC Genomics ; 16: 579, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26238441

ABSTRACT

BACKGROUND: The cereal rust fungi are destructive pathogens that affect grain production worldwide. Although the genomic and transcript sequences for three Puccinia species that attack wheat have been released, the functions of large repertories of genes from Puccinia still need to be addressed to understand the infection process of these obligate parasites. Host-induced gene silencing (HIGS) has emerged a useful tool to examine the importance of rust fungus genes while growing within host plants. In this study, HIGS was used to test genes from Puccinia with transcripts enriched in haustoria for their ability to interfere with full development of the rust fungi. RESULTS: Approximately 1200 haustoria enriched genes from Puccinia graminis f. sp. tritici (Pgt) were identified by comparative RNA sequencing. Virus-induced gene silencing (VIGS) constructs with fragments of 86 Puccinia genes, were tested for their ability to interfere with full development of these rust fungi. Most of the genes tested had no noticeable effects, but 10 reduced Pgt development after co-inoculation with the gene VIGS constructs and Pgt. These included a predicted glycolytic enzyme, two other proteins that are probably secreted and involved in carbohydrate or sugar metabolism, a protein involved in thiazol biosynthesis, a protein involved in auxin biosynthesis, an amino acid permease, two hypothetical proteins with no conserved domains, a predicted small secreted protein and another protein predicted to be secreted with similarity to bacterial proteins involved in membrane transport. Transient silencing of four of these genes reduced development of P. striiformis (Pst), and three of also caused reduction of P. triticina (Pt) development. CONCLUSIONS: Partial suppression of transcripts involved in a large variety of biological processes in haustoria cells of Puccinia rusts can disrupt their development. Silencing of three genes resulted in suppression of all three rust diseases indicating that it may be possible to engineer durable resistance to multiple rust pathogens with a single gene in transgenic wheat plants for sustainable control of cereal rusts.


Subject(s)
Basidiomycota/genetics , Gene Silencing , Gene-Environment Interaction , Genes, Fungal , Basidiomycota/metabolism , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Glycolysis/genetics , High-Throughput Nucleotide Sequencing , Plant Diseases/microbiology , Plant Diseases/virology , Transcription, Genetic , Transcriptome , Triticum/microbiology , Triticum/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...