Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 54(24): 8328-42, 2011 Dec 22.
Article in English | MEDLINE | ID: mdl-22111927

ABSTRACT

Pyrazolopyridine inhibitors with low micromolar potency for CHK1 and good selectivity against CHK2 were previously identified by fragment-based screening. The optimization of the pyrazolopyridines to a series of potent and CHK1-selective isoquinolines demonstrates how fragment-growing and scaffold morphing strategies arising from a structure-based understanding of CHK1 inhibitor binding can be combined to successfully progress fragment-derived hit matter to compounds with activity in vivo. The challenges of improving CHK1 potency and selectivity, addressing synthetic tractability, and achieving novelty in the crowded kinase inhibitor chemical space were tackled by multiple scaffold morphing steps, which progressed through tricyclic pyrimido[2,3-b]azaindoles to N-(pyrazin-2-yl)pyrimidin-4-amines and ultimately to imidazo[4,5-c]pyridines and isoquinolines. A potent and highly selective isoquinoline CHK1 inhibitor (SAR-020106) was identified, which potentiated the efficacies of irinotecan and gemcitabine in SW620 human colon carcinoma xenografts in nude mice.


Subject(s)
Antineoplastic Agents/chemical synthesis , Isoquinolines/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Protein Kinases/metabolism , Pyrazines/chemical synthesis , Pyridines/chemical synthesis , Adenosine Triphosphate/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Biological Availability , Cell Line, Tumor , Checkpoint Kinase 1 , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Isoquinolines/chemistry , Isoquinolines/pharmacology , Mice , Mice, Nude , Molecular Conformation , Neoplasm Transplantation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrazines/chemistry , Pyrazines/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Stereoisomerism , Structure-Activity Relationship , Transplantation, Heterologous
2.
Bioorg Med Chem Lett ; 20(14): 4045-9, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20561787

ABSTRACT

A range of 3,6-di(hetero)arylimidazo[1,2-a]pyrazine ATP-competitive inhibitors of CHK1 were developed by scaffold hopping from a weakly active screening hit. Efficient synthetic routes for parallel synthesis were developed to prepare analogues with improved potency and ligand efficiency against CHK1. Kinase profiling showed that the imidazo[1,2-a]pyrazines could inhibit other kinases, including CHK2 and ABL, with equivalent or better potency depending on the pendant substitution. These 3,6-di(hetero)aryl imidazo[1,2-a]pyrazines appear to represent a general kinase inhibitor scaffold.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrazines/chemistry , Pyrazines/pharmacology , Crystallography, X-Ray , Drug Design , Drug Evaluation, Preclinical
3.
J Med Chem ; 52(15): 4810-9, 2009 Aug 13.
Article in English | MEDLINE | ID: mdl-19572549

ABSTRACT

Checkpoint kinase 1 (CHK1) is an oncology target of significant current interest. Inhibition of CHK1 abrogates DNA damage-induced cell cycle checkpoints and sensitizes p53 deficient cancer cells to genotoxic therapies. Using template screening, a fragment-based approach to small molecule hit generation, we have identified multiple CHK1 inhibitor scaffolds suitable for further optimization. The sequential combination of in silico low molecular weight template selection, a high concentration biochemical assay and hit validation through protein-ligand X-ray crystallography provided 13 template hits from an initial in silico screening library of ca. 15000 compounds. The use of appropriate counter-screening to rule out nonspecific aggregation by test compounds was essential for optimum performance of the high concentration bioassay. One low molecular weight, weakly active purine template hit was progressed by iterative structure-based design to give submicromolar pyrazolopyridines with good ligand efficiency and appropriate CHK1-mediated cellular activity in HT29 colon cancer cells.


Subject(s)
Protein Kinase Inhibitors/chemical synthesis , Protein Kinases/drug effects , Checkpoint Kinase 1 , Drug Evaluation, Preclinical , HT29 Cells , Humans , Hydrogen Bonding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinases/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...