Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 119(3): 1107-14, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10069850

ABSTRACT

Nicotianamine (NA) occurs in all plants and chelates metal cations, including FeII, but reportedly not FeIII. However, a comparison of the FeII and ZnII affinity constants of NA and various FeIII-chelating aminocarboxylates suggested that NA should chelate FeIII. High-voltage electrophoresis of the FeNA complex formed in the presence of FeIII showed that the complex had a net charge of 0, consistent with the hexadentate chelation of FeIII. Measurement of the affinity constant for FeIII yielded a value of 10(20.6), which is greater than that for the association of NA with FeII (10(12.8)). However, capillary electrophoresis showed that in the presence of FeII and FeIII, NA preferentially chelates FeII, indicating that the FeIINA complex is kinetically stable under aerobic conditions. Furthermore, Fe complexes of NA are relatively poor Fenton reagents, as measured by their ability to mediate H2O2-dependent oxidation of deoxyribose. This suggests that NA will have an important role in scavenging Fe and protecting the cell from oxidative damage. The pH dependence of metal ion chelation by NA and a typical phytosiderophore, 2'-deoxymugineic acid, indicated that although both have the ability to chelate Fe, when both are present, 2'-deoxymugineic acid dominates the chelation process at acidic pH values, whereas NA dominates at alkaline pH values. The consequences for the role of NA in the long-distance transport of metals in the xylem and phloem are discussed.

2.
Life Sci ; 45(25): 2477-83, 1989.
Article in English | MEDLINE | ID: mdl-2532696

ABSTRACT

Removal of exogenously administered rat ANF (99-126) (rANF) from the rabbit coronary vasculature was investigated. Rabbit hearts were perfused using a modified Langendorff technique and ANF concentrations in the perfusate were measured by a radio-receptor assay. Under these conditions no major degradation of ANF was observed. On perfusion, however, the heart liberated large amounts of ANF. This release peaked 15 minutes after the initiation of perfusion, (685 + 220 pM) and then fell to a sustained basal level (305 + 80 pM) after 45 minutes. Although an increase in the perfusate flow rate reduced the ANF concentration, there was no significant difference in the rate of ANF release between the two flow rates used. After momentary cessation of flow ANF concentration fell to a significantly lower level, however, once again no significant change in rate of release occurred. These results suggest that the heart is not a major site of ANF degradation and that alterations in flow rate through the coronary vascular bed can cause changes in amounts of ANF released.


Subject(s)
Atrial Natriuretic Factor/metabolism , Coronary Vessels/physiology , Heart/physiology , Animals , Atrial Natriuretic Factor/pharmacology , Coronary Circulation , Coronary Vessels/drug effects , Diuretics/pharmacology , Heart/drug effects , In Vitro Techniques , Kinetics , Male , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiology , Peptide Fragments/pharmacology , Perfusion , Rabbits , Recombinant Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...