Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Funct Biomater ; 15(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38921515

ABSTRACT

The recombinant structural protein described in this study was designed based on sequences derived from elastin and silk. Silk-elastin hybrid copolymers are characterized by high solubility while maintaining high product flexibility. The phase transition temperature from aqueous solution to hydrogel, as well as other physicochemical and mechanical properties of such particles, can differ significantly depending on the number of sequence repeats. We present a preliminary characterization of the EJ17zipR protein obtained in high yield in a prokaryotic expression system and efficiently purified via a multistep process. Its addition significantly improves biomaterial's rheological and mechanical properties, especially elasticity. As a result, EJ17zipR appears to be a promising component for bioinks designed to print spatially complex structures that positively influence both shape retention and the internal transport of body fluids. The results of biological studies indicate that the addition of the studied protein creates a favorable microenvironment for cell adhesion, growth, and migration.

2.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38727343

ABSTRACT

In this study we propose to use for bioprinting a bioink enriched with a recombinant RE15mR protein with a molecular weight of 26 kDa, containing functional sequences derived from resilin and elastin. The resulting protein also contains RGD sequences in its structure, as well as a metalloproteinase cleavage site, allowing positive interaction with the cells seeded on the construct and remodeling the structure of this protein in situ. The described protein is produced in a prokaryotic expression system using an E. coli bacterial strain and purified by a process using a unique combination of known methods not previously used for recombinant elastin-like proteins. The positive effect of RE15mR on the mechanical, physico-chemical, and biological properties of the print is shown in the attached results. The addition of RE15mR to the bioink resulted in improved mechanical and physicochemical properties and promoted the habitation of the prints by cells of the L-929 line.

3.
Nanomaterials (Basel) ; 14(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727354

ABSTRACT

Currently, a major challenge in material engineering is to develop a cell-safe biomaterial with significant utility in processing technology such as 3D bioprinting. The main goal of this work was to optimize the composition of a new graphene oxide (GO)-based bioink containing additional extracellular matrix (ECM) with unique properties that may find application in 3D bioprinting of biomimetic scaffolds. The experimental work evaluated functional properties such as viscosity and complex modulus, printability, mechanical strength, elasticity, degradation and absorbability, as well as biological properties such as cytotoxicity and cell response after exposure to a biomaterial. The findings demonstrated that the inclusion of GO had no substantial impact on the rheological properties and printability, but it did enhance the mechanical properties. This enhancement is crucial for the advancement of 3D scaffolds that are resilient to deformation and promote their utilization in tissue engineering investigations. Furthermore, GO-based hydrogels exhibited much greater swelling, absorbability and degradation compared to non-GO-based bioink. Additionally, these biomaterials showed lower cytotoxicity. Due to its properties, it is recommended to use bioink containing GO for bioprinting functional tissue models with the vascular system, e.g., for testing drugs or hard tissue models.

4.
Bioengineering (Basel) ; 11(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38790306

ABSTRACT

There is a growing interest in the production of bioinks that on the one hand, are biocompatible and, on the other hand, have mechanical properties that allow for the production of stable constructs that can survive for a long time after transplantation. While the selection of the right material is crucial for bioprinting, there is another equally important issue that is currently being extensively researched-the incorporation of the vascular system into the fabricated scaffolds. Therefore, in the following manuscript, we present the results of research on bioink with unique physico-chemical and biological properties. In this article, two methods of seeding cells were tested using bioink B and seeding after bioprinting the whole model. After 2, 5, 8, or 24 h of incubation, the flow medium was used in the tested systems. At the end of the experimental trial, for each time variant, the canals were stored in formaldehyde, and immunohistochemical staining was performed to examine the presence of cells on the canal walls and roof. Cells adhered to both ways of fiber arrangement; however, a parallel bioprint with the 5 h incubation and the intermediate plating of cells resulted in better adhesion efficiency. For this test variant, the percentage of cells that adhered was at least 20% higher than in the other analyzed variants. In addition, it was for this variant that the lowest percentage of viable cells was found that were washed out of the tested model. Importantly, hematoxylin and eosin staining showed that after 8 days of culture, the cells were evenly distributed throughout the canal roof. Our study clearly shows that neovascularization-promoting cells effectively adhere to ECM-based pancreatic bioink. Summarizing the presented results, it was demonstrated that the proposed bioink compositions can be used for bioprinting bionic organs with a vascular system formed by endothelial cells and fibroblasts.

5.
J Funct Biomater ; 14(7)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37504866

ABSTRACT

Recently, tissue engineering, including 3D bioprinting of the pancreas, has acquired clinical significance and has become an outstanding potential method of customized treatment for type 1 diabetes mellitus. The study aimed to evaluate the function of 3D-bioprinted pancreatic petals with pancreatic islets in the murine model. A total of 60 NOD-SCID (Nonobese diabetic/severe combined immunodeficiency) mice were used in the study and divided into three groups: control group; IsletTx (porcine islets transplanted under the renal capsule); and 3D bioprint (3D-bioprinted pancreatic petals with islets transplanted under the skin, on dorsal muscles). Glucose, C-peptide concentrations, and histological analyses were performed. In the obtained results, significantly lower mean fasting glucose levels (mg/dL) were observed both in a 3D-bioprint group and in a group with islets transplanted under the renal capsule when compared with untreated animals. Differences were observed in all control points: 7th, 14th, and 28th days post-transplantation (129, 119, 118 vs. 140, 139, 140; p < 0.001). Glucose levels were lower on the 14th and 28th days in a group with bioprinted petals compared to the group with islets transplanted under the renal capsule. Immunohistochemical staining indicated the presence of secreted insulin-living pancreatic islets and neovascularization within 3D-bioprinted pancreatic petals after transplantation. In conclusion, bioprinted bionic petals significantly lowered plasma glucose concentration in studied model species.

6.
Biomedicines ; 9(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34944607

ABSTRACT

Type 1 diabetes (T1D) is characterized by the destruction of over 90% of the ß-cells. C-peptide is a parameter for evaluating T1D. Streptozotocin (STZ) is a standard method of inducing diabetes in animals. Eight protocols describe the administration of STZ in mice; C-peptide levels are not taken into account. The aim of the study is to determine whether the STZ protocol for the induction of beta-cell mass destruction allows for the development of a stable in vivo mouse model for research into new transplant procedures in the treatment of type 1 diabetes. Materials and methods: Forty BALB/c mice were used. The animals were divided into nine groups according to the STZ dose and a control group. The STZ doses were between 140 and 400 mg/kg of body weight. C-peptide was taken before and 2, 7, 9, 12, 14, and 21 days after STZ. Immunohistochemistry was performed. The area of the islet and insulin-/glucagon-expressing tissues was calculated. Results: Mice who received 140, 160, 2 × 100, 200, and 250 mg of STZ did not show changes in mean fasting C-peptide in comparison to the control group and to day 0. All animals with doses of 300 and 400 mg of STZ died during the experiment. The area of the islets did not show any differences between the control and STZ-treated mice in groups below 300 mg. The reduction of insulin-positive areas in STZ mice did not exceed 50%. Conclusions: Streptozotocin is not an appropriate method of inducing a diabetes model for further research on transplantation treatments of type 1 diabetes, having caused the destruction of more than 90% of the ß-cell mass in BALB/c mice.

7.
Nanomaterials (Basel) ; 11(11)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34835782

ABSTRACT

Chitosan is one of the most well-known and characterized materials applied in tissue engineering. Due to its unique chemical, biological and physical properties chitosan is frequently used as the main component in a variety of biomaterials such as membranes, scaffolds, drug carriers, hydrogels and, lastly, as a component of bio-ink dedicated to medical applications. Chitosan's chemical structure and presence of active chemical groups allow for modification for tailoring material to meet specific requirements according to intended use such as adequate endurance, mechanical properties or biodegradability time. Chitosan can be blended with natural (gelatin, hyaluronic acid, collagen, silk, alginate, agarose, starch, cellulose, carbon nanotubes, natural rubber latex, κ-carrageenan) and synthetic (PVA, PEO, PVP, PNIPPAm PCL, PLA, PLLA, PAA) polymers as well as with other promising materials such as aloe vera, silica, MMt and many more. Chitosan has several derivates: carboxymethylated, acylated, quaternary ammonium, thiolated, and grafted chitosan. Its versatility and comprehensiveness are confirming by further chitosan utilization as a leading constituent of innovative bio-inks applied for tissue engineering. This review examines all the aspects described above, as well as is focusing on a novel application of chitosan and its modifications, including the 3D bioprinting technique which shows great potential among other techniques applied to biomaterials fabrication.

8.
Cells ; 10(6)2021 06 18.
Article in English | MEDLINE | ID: mdl-34207441

ABSTRACT

Type 1 diabetes (T1D) is the third most common autoimmune disease which develops due to genetic and environmental risk factors. Often, intensive insulin therapy is insufficient, and patients require a pancreas or pancreatic islets transplant. However, both solutions are associated with many possible complications, including graft rejection. The best approach seems to be a donor-independent T1D treatment strategy based on human stem cells cultured in vitro and differentiated into insulin and glucagon-producing cells (ß and α cells, respectively). Both types of cells can then be incorporated into the bio-ink used for 3D printing of the bionic pancreas, which can be transplanted into T1D patients to restore glucose homeostasis. The aim of this review is to summarize current knowledge about stem cells sources and their transformation into key pancreatic cells. Last, but not least, we comment on possible solutions of post-transplant immune response triggered stem cell-derived pancreatic cells and their potential control mechanisms.


Subject(s)
Diabetes Mellitus, Type 1/therapy , Pancreas/cytology , Stem Cells/cytology , Animals , Bionics/methods , Cell Differentiation/physiology , Humans , Insulin-Secreting Cells/cytology
9.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209772

ABSTRACT

Due to the limited number of organ donors, 3D printing of organs is a promising technique. Tissue engineering is increasingly using xenogeneic material for this purpose. This study was aimed at assessing the safety of decellularized porcine pancreas, together with the analysis of the risk of an undesirable immune response. We tested eight variants of the decellularization process. We determined the following impacts: rinsing agents (PBS/NH3·H2O), temperature conditions (4 °C/24 °C), and the grinding method of native material (ground/cut). To assess the quality of the extracellular matrix after the completed decellularization process, analyses of the following were performed: DNA concentration, fat content, microscopic evaluation, proteolysis, material cytotoxicity, and most importantly, the Triton X-100 content. Our analyses showed that we obtained a product with an extremely low detergent content with negligible residual DNA content. The obtained results confirmed the performed histological and immuno-fluorescence staining. Moreover, the TEM microscopic analysis proved that the correct collagen structure was preserved after the decellularization process. Based on the obtained results, we chose the most favorable variant in terms of quality and biology. The method we chose is an effective and safe method that gives a chance for the development of transplant and regenerative medicine.


Subject(s)
Extracellular Matrix/physiology , Pancreas/ultrastructure , Tissue Engineering/methods , Tissue Scaffolds , Animals , Bioprinting/methods , Cells, Cultured , Detergents/chemistry , Detergents/pharmacology , Extracellular Matrix/chemistry , Fibroblasts/cytology , Fibroblasts/physiology , Materials Testing , Mice , Octoxynol/chemistry , Octoxynol/pharmacology , Pancreas/cytology , Powders/chemistry , Printing, Three-Dimensional , Proteomics , Quality Control , Swine , Tissue Engineering/standards , Tissue Scaffolds/chemistry , Tissue Scaffolds/standards
10.
Micromachines (Basel) ; 12(3)2021 Mar 14.
Article in English | MEDLINE | ID: mdl-33799490

ABSTRACT

BACKGROUND: 3D bioprinting is the future of constructing functional organs. Creating a bioactive scaffold with pancreatic islets presents many challenges. The aim of this paper is to assess how the 3D bioprinting process affects islet viability. METHODS: The BioX 3D printer (Cellink), 600 µm inner diameter nozzles, and 3% (w/v) alginate cell carrier solution were used with rat, porcine, and human pancreatic islets. Islets were divided into a control group (culture medium) and 6 experimental groups (each subjected to specific pressure between 15 and 100 kPa). FDA/PI staining was performed to assess the viability of islets. Analogous studies were carried out on α-cells, ß-cells, fibroblasts, and endothelial cells. RESULTS: Viability of human pancreatic islets was as follows: 92% for alginate-based control and 94%, 90%, 74%, 48%, 61%, and 59% for 15, 25, 30, 50, 75, and 100 kPa, respectively. Statistically significant differences were observed between control and 50, 75, and 100 kPa, respectively. Similar observations were made for porcine and rat islets. CONCLUSIONS: Optimal pressure during 3D bioprinting with pancreatic islets by the extrusion method should be lower than 30 kPa while using 3% (w/v) alginate as a carrier.

11.
Micromachines (Basel) ; 11(7)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32629779

ABSTRACT

The technology of tissue engineering is a rapidly evolving interdisciplinary field of science that elevates cell-based research from 2D cultures through organoids to whole bionic organs. 3D bioprinting and organ-on-a-chip approaches through generation of three-dimensional cultures at different scales, applied separately or combined, are widely used in basic studies, drug screening and regenerative medicine. They enable analyses of tissue-like conditions that yield much more reliable results than monolayer cell cultures. Annually, millions of animals worldwide are used for preclinical research. Therefore, the rapid assessment of drug efficacy and toxicity in the early stages of preclinical testing can significantly reduce the number of animals, bringing great ethical and financial benefits. In this review, we describe 3D bioprinting techniques and first examples of printed bionic organs. We also present the possibilities of microfluidic systems, based on the latest reports. We demonstrate the pros and cons of both technologies and indicate their use in the future of medicine.

12.
Transplant Proc ; 52(7): 2043-2049, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32527472

ABSTRACT

INTRODUCTION: The extracellular matrix (ECM) consists, among others, of polysaccharides, glycosaminoglycans, and proteins. It is being increasingly used in tissue bioengineering. Obtaining ECM of the highest quality through decellularization is a big challenge because of some differences in organ structure. To deprive organs of the cellular part, chemical, enzymatic, or mechanical methods are used. After decellularization, we get a scaffold made of a variety of proteins, and it is the role of these proteins that can significantly affect the maintenance of the spatial structure and be a suitable environment for cells to rebuild a specific organ. AIM: Estimation of the detergent (Triton X-100) flow parameters and anthropometric donors' decellularization process accuracy on the final ECM composition. MATERIALS: Five human pancreata, rejected from transplantation, were used for decellularization. All organs were harvested from brain-dead donors age 13 to 60 years. METHODS: Decellularization was carried out using the flow method with Triton X-100 as an active agent. The experiment compared 5 different flow values. After decellularization, an assessment of the final DNA concentration and the protein composition was performed. Results were compared to anthropometric data of donors. In addition, a microscopic analysis was also carried out. RESULTS: The best results were obtained using a flow of 120 mL/minute. A higher detergent flow was associated with a lower concentration of residual DNA in scaffold. Analysis of the protein profile with anthropometric data has shown that LAM A2 was increasing with age and LAMA5 was decreasing. Being overweight was associated with a higher proportion of COL1 and 4 and a smaller proportion of COL6.


Subject(s)
Detergents , Extracellular Matrix , Octoxynol , Pancreas , Tissue Engineering/methods , Adolescent , Adult , Extracellular Matrix/chemistry , Extracellular Matrix/drug effects , Female , Glycosaminoglycans , Humans , Male , Middle Aged , Pancreas/chemistry , Pancreas/drug effects , Perfusion , Tissue Donors , Tissue Scaffolds/chemistry , Young Adult
13.
Arch Immunol Ther Exp (Warsz) ; 68(2): 13, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32297019

ABSTRACT

Interactions between the immune system and the pancreas are pivotal in understanding how and why ß cells' damage causes problems with pancreas functioning. Pancreatic islets are crucial in maintaining glucose homeostasis in organs, tissue and cells. Autoimmune aggression towards pancreatic islets, mainly ß cells, leads to type 1 diabetes-one of the most prevalent autoimmune disease in the world, being a worldwide risk to health of many people. In this review, we highlight the role of immune cells and its influence in the development of autoimmunity in Langerhans islets. Moreover, we discuss the impact of the immunological factors on future understanding possible recurrence of autoimmunity on 3D-bioprinted bionic pancreas.


Subject(s)
Bioprinting/trends , Diabetes Mellitus, Type 1/therapy , Immune System/cytology , Pancreas/immunology , Stem Cells/cytology , Autoimmunity , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Humans , Insulin-Secreting Cells/cytology , Islets of Langerhans/cytology , Islets of Langerhans/immunology , Islets of Langerhans Transplantation , Pancreas/pathology
14.
Cent Eur J Immunol ; 45(4): 439-453, 2020.
Article in English | MEDLINE | ID: mdl-33658892

ABSTRACT

Type 1 diabetes (T1D) is the third most common autoimmune disease which develops due to genetic and environmental risk factors. Based on the World Health Organization (WHO) report from 2014 the number of people suffering from all types of diabetes ascended to 422 million, compared to 108 million in 1980. It was calculated that this number will double by the end of 2030. In 2015 American Diabetes Association (ADA) announced that 30.3 million Americans (that is 9.4% of the overall population) had diabetes of which only approximately 1.25 million had T1D. Nowadays, T1D represents roughly 10% of adult diabetes cases total. Multiple genetic abnormalities at different loci have been found to contribute to type 1 diabetes development. The analysis of genome-wide association studies (GWAS) of T1D has identified over 50 susceptible regions (and genes within these regions). Many of these regions are defined by single nucleotide polymorphisms (SNPs) but molecular mechanisms through which they increase or lower the risk of diabetes remain unknown. Genetic factors (in existence since birth) can be detected long before the emergence of immunological or clinical markers. Therefore, a comprehensive understanding of the multiple genetic factors underlying T1D is extremely important for further clinical trials and development of personalized medicine for diabetic patients. We present an overview of current studies and information about regions in the human genome associated with T1D. Moreover, we also put forward information about epigenetic modifications, non-coding RNAs and environmental factors involved in T1D development and onset.

15.
Transplant Proc ; 51(8): 2787-2792, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31445766

ABSTRACT

BACKGROUND: Diabetes is an autoimmunologic disease that may have a different background. The aim of our study was to show that type 1 diabetes is accompanied by changes in gene expression in peripheral blood mononuclear cells. We analyzed the genes characteristic of pancreatic islet cells and genes playing a big part in autoimmune diseases and cancer. DESIGN: The study included 21 patients and was performed to examine the expression of 9 genes. The patients were divided into 3 research groups: people with type 1 diabetes, people with diabetes after pancreas transplant, and a control group of healthy patients. To assess the level of expression, RNA material was obtained from peripheral blood collected from individuals qualified for the study. RESULTS: The results of the study showed many interesting changes in the expression level of the analyzed genes. It was demonstrated that CASR gene expression was significantly higher in transplant patients than in diabetic patients. Differences in the level of activity are also noted in genes that take part in autoimmune diseases. PROPOSAL: Profiling gene expression in peripheral blood samples may be a useful and noninvasive diagnostic tool that allows early detection of changes leading to the onset or resumption of diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Gene Expression Profiling , Leukocytes, Mononuclear/metabolism , Pancreas Transplantation , Adult , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/surgery , Female , Gene Expression Profiling/methods , Humans , Male , Middle Aged , Pancreas/metabolism , Receptors, Calcium-Sensing/metabolism
16.
Sci Rep ; 6: 39573, 2016 12 23.
Article in English | MEDLINE | ID: mdl-28008998

ABSTRACT

Pathogenesis of primary sclerosing cholangitis (PSC) may involve impaired bile acid (BA) homeostasis. We analyzed expressions of factors mediating enterohepatic circulation of BA using ileal and colonic (ascending and sigmoid) biopsies obtained from patients with PSC with and without ulcerative colitis (UC) and explanted PSC livers. Two-fold increase of BA-activated farnesoid X receptor (FXR) protein levels were seen in ascending and sigmoid colon of PSC patients with correspondingly decreased apical sodium-dependent BA transporter (ASBT) gene expression. This was associated with increased OSTß protein levels in each part of analyzed gut. An intestinal fibroblast growth factor (FGF19) protein expression was significantly enhanced in ascending colon. Despite increased hepatic nuclear receptors (FXR, CAR, SHP), and FGF19, neither CYP7A1 suppression nor CYP3A4 induction were observed. The lack of negative regulation of BA synthesis may be accountable for lower levels of cholesterol observed in PSC in comparison to primary biliary cholangitis (PBC). In conclusion, chronic cholestasis in PSC induces adaptive changes in expression of BA transporters and FXR in the intestine. However hepatic impairment of expected in chronic cholestasis downregulation of CYP7A1 and upregulation of CYP3A4 may promote BA-induced liver injury in PSC.


Subject(s)
Bile Acids and Salts/metabolism , Cholangitis, Sclerosing/pathology , Liver/physiopathology , Adult , Biopsy , Cholesterol 7-alpha-Hydroxylase/metabolism , Chronic Disease , Colon/metabolism , Cytochrome P-450 CYP3A/metabolism , Female , Fibroblast Growth Factors/metabolism , Gene Expression Profiling , Gene Expression Regulation , Homeostasis , Humans , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Male , Middle Aged , Receptors, Cytoplasmic and Nuclear/metabolism , Young Adult
17.
J Immunol Res ; 2015: 571353, 2015.
Article in English | MEDLINE | ID: mdl-26504856

ABSTRACT

BACKGROUND/AIM: Sulphotransferase 2A1 (SULT2A1) exerts hepatoprotective effects. Transcription of SULT2A1 gene is induced by pregnane-X-receptor (PXR) and can be repressed by miR-378a-5p. We studied the PXR/SULT2A1 axis in chronic cholestatic conditions: primary sclerosing cholangitis (PSC) and primary biliary cirrhosis (PBC). MATERIALS/METHODS: Western-blot/PCRs for SULT2A1/PXR were performed in PSC (n = 11), PBC (n = 19), and control liver tissues (n = 19). PXR and SULT2A1 mRNA was analyzed in intestinal tissues from 22 PSC patients. Genomic DNA was isolated from blood of PSC patients (n = 120) and an equal number of healthy volunteers. Liver miRNA expression was evaluated using Affymetrix-Gene-Chip miRNA4.0. RESULTS: Increased PXR protein was observed in both PSC and PBC compared to controls and was accompanied by a significant increase of SULT2A1 in PBC but not in PSC. Decreased expression of SULT2A1 mRNA was also seen in ileum of patients with PSC. Unlike PBC, miRNA analysis in PSC has shown a substantial increase in liver miR-378a-5p. CONCLUSIONS: PSC is characterized by disease-specific impairment of SULT2A1 expression following PXR activation, a phenomenon which is not noted in PBC, and may account for the impaired hepatoprotection in PSC. miRNA analysis suggests that SULT2A1 expression in PSC may be regulated by miR-378a-5p, connoting its pathogenic role.


Subject(s)
Cholangitis, Sclerosing/genetics , Cholangitis, Sclerosing/metabolism , Liver/metabolism , Receptors, Steroid/genetics , Sulfotransferases/genetics , Sulfotransferases/metabolism , Adolescent , Adult , Aged , Base Sequence , Cholangitis, Sclerosing/diagnosis , Female , Gene Expression Regulation , Humans , Intestine, Small/metabolism , Liver/pathology , Liver Cirrhosis, Biliary/diagnosis , Liver Cirrhosis, Biliary/genetics , Liver Cirrhosis, Biliary/metabolism , Male , MicroRNAs/genetics , Middle Aged , Molecular Sequence Data , Polymorphism, Single Nucleotide , Pregnane X Receptor , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Steroid/metabolism , Young Adult
18.
J Gastrointestin Liver Dis ; 23(1): 33-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24689094

ABSTRACT

INTRODUCTION: The common PNPLA3 (adiponutrin) variant p.I148M represents a major genetic driver of progression in non-alcoholic fatty liver disease (NAFLD). NAFLD is commonly associated with traits of the metabolic syndrome, therefore it is mostly suspected in obese individuals. Here, we investigate the association between the PNPLA3 variant and anthropometric traits in a cohort of healthy individuals. PATIENTS AND METHODS: We recruited 1,000 (500 females; age 18-66 years) healthy blood donors. The PNPLA3 variant was genotyped using TaqMan assays. All individuals were phenotyped with respect to anthropometric characteristics. We also determined the percentage of total fat (F%) and active tissue (TA%) of body weight. RESULTS: Healthy carriers of the PNPLA3 [IM] and [MM] genotypes, although not differing in height from individuals with the genotype [II], displayed significantly lower body weight and lower BMI (both P = 0.005), higher TA% (P = 0.03) but lower F% (P = 0.03) and smaller waist, chest and shin circumferences (all P < 0.05). Separate analysis for males and females demonstrated an association between the [IM] and [MM] genotypes and higher TA% but lower F% (P = 0.04) in females. In males, BMI and total weight were significantly (P = 0.04) lower among carriers of the [M] allele. DISCUSSION: Healthy individuals carrying the prosteatotic PNPLA3 allele p.I48M may be leaner as compared to the carriers of the common allele. Hence in clinical practice they might be overlooked since they do not necessarily present with the anthropometric characteristics commonly associated with severe hepatic steatosis.


Subject(s)
Body Composition/genetics , Lipase/genetics , Membrane Proteins/genetics , Adipose Tissue/anatomy & histology , Adolescent , Adult , Aged , Anthropometry/methods , Body Mass Index , Body Weight/genetics , Female , Gene Frequency , Heterozygote , Humans , Male , Middle Aged , Obesity/genetics , Obesity/pathology , Polymorphism, Single Nucleotide , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...