Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36143668

ABSTRACT

One of the main limitations of laser powder bed fusion technology is the residual stress (RS) introduced into the material by the local heating of the laser beam. RS restricts the processability of some materials and causes shape distortions in the process. Powder bed preheating is a commonly used technique for RS mitigation. Therefore, the objective of this study was to investigate the effect of powder bed preheating in the range of room temperature to 400 °C on RS, macrostructure, microstructure, mechanical properties, and properties of the unfused powder of the nickel-based superalloy Inconel 939. The effect of base plate preheating on RS was determined by an indirect method using deformation of the bridge-shaped specimens. Inconel 939 behaved differently than titanium and aluminum alloys when preheated at high temperatures. Preheating at high temperatures resulted in higher RS, higher 0.2% proof stress and ultimate strength, lower elongation at brake, and higher material hardness. The increased RSs and the change in mechanical properties are attributed to changes in the microstructure. Preheating resulted in a larger melt pool, increased the width of columnar grains, and led to evolution of the carbide phase. The most significant microstructure change was in the increase of the size and occurrence of the carbide phase when higher preheating was applied. Furthermore, it was detected that the evolution of the carbide phase strongly corresponds to the build time when high-temperature preheating is applied. Rapid oxidation of the unfused powder was not detected by EDX or XRD analyses.

2.
Materials (Basel) ; 13(11)2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32526865

ABSTRACT

The global aim of the theme of magnesium alloy processing by the selective laser melting technology is to enable printing of replacements into the human body. By combining the advantages of WE43 magnesium alloy and additive manufacturing, it is possible to print support structures that have very similar properties to human bones. However, printing magnesium alloy parts is very difficult, and the printing strategies are still under development. Knowledge of weld deposit behaviour is needed to design a complex printing strategy and still missing. The main aim of the manuscript is the find a stable process window and identify the dependence of the weld deposit shape and properties on the laser power and scanning speed. The range of the tested parameters was 100-400 W and 100-800 mm/s for laser power and scanning speed. The profilometry and light microscopy were used to verify the continuity and shape evaluation. The microhardness and EDX analysis were used for the detailed view of the weld deposit. The manuscript specifies the weld deposit dimensions, their changes depending on laser power and scanning speed, and the continuity of the weld tracks. The stable weld deposits are made by the energy density of 5.5-12 J/mm2. Thin walls were also created by layering welds to determine the surface roughness scattering (Ra 35-60) for various settings of laser power and scanning speed.

3.
J Sep Sci ; 31(15): 2745-53, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18666181

ABSTRACT

We describe ion chromatography (IC) on open tubular cation exchange columns with a controllable capacity multilayered stationary phase architecture. The columns of relatively large bore (75 microm id) are fabricated by coating fused-silica capillaries with multiple layers of poly(butadiene-maleic acid) (PBMA) copolymer and crosslinking the deposited layers by thermally initiated radical polymerisation. Column capacity increases in a predictable manner with increase in the number of successively coated layers. Gravity flow with a modest head (< 2 m) can provide the desired separations within a reasonable period. We provide a minimalist configuration where no suppression is used, the sample is injected hydrodynamically as in CE, and detection is accomplished by an inexpensive homebuilt contactless conductivity detector or a capacitance to voltage digital converter. A 1 m long 75 microm bore column coated with two layers of PBMA allows gravity-flow open tubular IC to separate four alkali cations in < 10 min with a 1 mM tartaric acid (TA) eluent. Simultaneous separation of alkali and alkaline earth metal cations can be accomplished in less than 25 min using 1.75 mM pyridinedicarboxylic acid as an eluent. Contactless conductometric detection (C(4)D) allows LODs down to 150 nmol/L, corresponding to 30 fmol injections. Analysis of real water samples is demonstrated.


Subject(s)
Cation Exchange Resins/chemistry , Chromatography, Ion Exchange/instrumentation , Chromatography, Ion Exchange/methods , Cations/analysis , Gravitation , Metals, Alkali/analysis , Metals, Alkaline Earth/analysis , Particle Size , Polymethacrylic Acids/chemistry , Sensitivity and Specificity , Silicon Dioxide/chemistry , Surface Properties , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...