Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 11641, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773311

ABSTRACT

Using scanning tunneling microscopy and spectroscopy we demonstrate a revival of magnetism in 7-armchair nanoribbon by unpassivated atoms at the termini. Namely, a pair of intense Kondo resonances emerges at the peripheries of zigzag terminus revealing the many-body screening effects of local magnetic moments. Although Kondo resonance originates from a missing local orbital, it extends to a distance of 2.5 nm along the edge of the ribbon. The results are complemented by density functional theory calculations which suggest a possible coupling between Kondo states despite screening effects of substrate electrons. These findings indicate a possibility to restore intrinsic magnetic ordering in graphene nanoribbon without major structural modifications.

2.
Phys Chem Chem Phys ; 26(15): 11988-12002, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38573315

ABSTRACT

Ionic liquid crystals (ILCs) combine the ion mobility of ionic liquids with the order and self-assembly of thermotropic mesophases. To understand the role of the anion in ILCs, wedge-shaped arylguanidinium salts with tetradecyloxy side chains were chosen as benchmark systems and their liquid crystalline self-assembly in the bulk phase as well as their electrochemical behavior in solution were studied depending on the anion. Differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and X-ray diffraction (WAXS, SAXS) experiments revealed that for spherical anions, the phase width of the hexagonal columnar mesophase increased with the anion size, while for non-spherical anions, the trends were less clear cut. Depending on the anion, the ILCs showed different stability towards electrochemical oxidation and reduction with the most stable being the PF6 based compound. Cyclic voltammetry (CV) and density functional theory (DFT) calculations suggest a possible contribution of the guanidinium cation to the oxidation processes.

3.
Phys Chem Chem Phys ; 25(35): 23548-23554, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37650210

ABSTRACT

3,4,9,10-Perylenetetracarboxylic-dianhydride (PTCDA) aggregates have unique optical properties and are model materials for studying exciton energy transfer (EET) in planar stacked molecular aggregates. In the framework of density matrix theory, a hierarchy of molecular transition operator expectation values could be constructed to derive the equations of motion of multi-exciton states. Realistic parameters for PTCDA molecules are used to study EET and the optical response of two-dimensional aggregates upon local excitation. Our simulations show that information about the dark state can be obtained with local field excitation and the inter-chain coupling results in a red-shift of the lowest excitonic energy level. Configuration effects, inter-chain detuning and multi-exciton states are discussed. The calculated lowest excitonic energy level of a 2D PTCDA aggregate is qualitatively consistent with the lowest experimental absorption peak of a PTCDA film. The obtained results are valuable for the study of aggregates in optical nanocavities and for the design of photoelectric devices.

4.
J Phys Chem A ; 127(28): 5942-5955, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37417351

ABSTRACT

The quantum mechanical description of many-electron dynamics in molecules driven by short laser pulses is at the heart of theoretical attochemistry. In addition to the formidable time-dependent electronic structure problem, the field faces the challenge that nuclear motion, ideally also treated quantum mechanically, may not be negligible, but scales enormously in effort. As a consequence, most first-principles calculations on ultrafast electron dynamics in molecules are done within the fixed-nuclear approximation. For laser-pulse excitation in H2+, where an "exact" treatment of the coupled nuclear-electron dynamics is possible, it has been shown that nuclear motion can have a nonnegligible impact on high harmonic generation (HHG) spectra (Witzorky et al., J. Chem. Theor. Comput. 2021, 17, 7353-7365). It is not so clear, however, how to include (quantum) nuclear motion also for more complicated molecules, with more electrons and/or nuclei, in particular when the electronic structure is described by correlated, multistate wavefunction methods such as the time-dependent configuration interaction (TD-CI). In this work, we suggest a scheme in which the Born-Oppenheimer potential energy surfaces of a molecule are approximated by model potentials (harmonic and asymptotic, as an expansion in 1/R), obtained from only a few ab initio calculations, with the prospect to treat complex molecular systems. The method is tested successfully for HHG by few-cycle laser pulses for the "exact" H2+ reference. It is then applied for diatomic molecules with more electrons and for a two-dimensional model of the water molecule using TD-CIS (S = single) for the electronic structure part.

5.
Chemistry ; 28(64): e202201068, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-35789121

ABSTRACT

Fifteen N-butylpyridinium salts - five monometallic [C4 Py]2 [MBr4 ] and ten bimetallic [C4 Py]2 [M0.5 a M0.5 b Br4 ] (M=Co, Cu, Mn, Ni, Zn) - were synthesized, and their structures and thermal and electrochemical properties were studied. All the compounds are ionic liquids (ILs) with melting points between 64 and 101 °C. Powder and single-crystal X-ray diffraction show that all ILs are isostructural. The electrochemical stability windows of the ILs are between 2 and 3 V. The conductivities at room temperature are between 10-5 and 10-6  S cm-1 . At elevated temperatures, the conductivities reach up to 10-4  S cm-1 at 70 °C. The structures and properties of the current bromide-based ILs were also compared with those of previous examples using chloride ligands, which illustrated differences and similarities between the two groups of ILs.

6.
J Chem Theory Comput ; 17(12): 7353-7365, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34747605

ABSTRACT

The response of the hydrogen molecular ion, H2+, to few-cycle laser pulses of different intensities is simulated. To treat the coupled electron-nuclear motion, we use adiabatic potentials computed with Gaussian-type basis sets together with a heuristic ionization model for the electron and a grid representation for the nuclei. Using this mixed-basis approach, the time-dependent Schrödinger equation is solved, either within the Born-Oppenheimer approximation or with nonadiabatic couplings included. The dipole response spectra are compared to all-grid-based solutions for the three-body problem, which we take as a reference to benchmark the Gaussian-type basis set approaches. Also, calculations employing the fixed-nuclei approximation are performed, to quantify effects due to nuclear motion. For low intensities and small ionization probabilities, we get excellent agreement of the dynamics using Gaussian-type basis sets with the all-grid solutions. Our investigations suggest that high harmonic generation (HHG) and high-frequency response, in general, can be reliably modeled using Gaussian-type basis sets for the electrons for not too high harmonics. Further, nuclear motion destroys electronic coherences in the response spectra even on the time scale of about 30 fs and affects HHG intensities, which reflect the electron dynamics occurring on the attosecond time scale. For the present system, non-Born-Oppenheimer effects are small. The Gaussian-based, nonadiabatically coupled, time-dependent multisurface approach to treat quantum electron-nuclear motion beyond the non-Born-Oppenheimer approximation can be easily extended to approximate wavefunction methods, such as time-dependent configuration interaction singles (TD-CIS), for systems where no benchmarks are available.

7.
Phys Chem Chem Phys ; 23(24): 13544-13560, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34105544

ABSTRACT

With recent experimental advances in laser-driven electron dynamics in polyatomic molecules, the need arises for their reliable theoretical modelling. Among efficient, yet fairly accurate methods for many-electron dynamics are Time-Dependent Configuration Interaction Singles (TD-CIS) (a Wave Function Theory (WFT) method), and Real-Time Time-Dependent Density Functional Theory (RT-TD-DFT), respectively. Here we compare TD-CIS combined with extended Atomic Orbital (AO) bases, TD-CIS/AO, with RT-TD-DFT in a grid representation of the Kohn-Sham orbitals, RT-TD-DFT/Grid. Possible ionization losses are treated by complex absorbing potentials in energy space (for TD-CIS/AO) or real space (for RT-TD-DFT), respectively. The comparison is made for two test cases: (i) state-to-state transitions using resonant lasers (π-pulses), i.e., bound electron motion, and (ii) large-amplitude electron motion leading to High Harmonic Generation (HHG). Test systems are a H2 molecule and cis- and trans-1,2-dichlorethene, C2H2Cl2, (DCE). From time-dependent electronic energies, dipole moments and from HHG spectra, the following observations are made: first, for bound state-to-state transitions enforced by π-pulses, TD-CIS nicely accounts for the expected population inversion in contrast to RT-TD-DFT, in agreement with earlier findings. Secondly, when using laser pulses under non-resonant conditions, dipole moments and lower harmonics in HHG spectra are obtained by TD-CIS/AO which are in good agreement with those obtained with RT-TD-DFT/Grid. Deviations become larger for higher harmonics and at low laser intensities, i.e., for low-intensity HHG signals. We also carefully test effects of basis sets for TD-CIS/AO and grid size for RT-TD-DFT/Grid, different exchange-correlation functionals in RT-TD-DFT, and absorbing boundaries. Finally, for the present examples, TD-CIS/AO is observed to be at least an order of magnitude more computationally efficient than RT-TD-DFT/Grid.

8.
J Comput Chem ; 41(19): 1781-1789, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32394459

ABSTRACT

Near edge X-ray absorption fine structure (NEXAFS) spectra and their pump-probe extension (PP-NEXAFS) offer insights into valence- and core-excited states. We present PSIXAS, a recent implementation for simulating NEXAFS and PP-NEXAFS spectra by means of the transition-potential and the Δ-Kohn-Sham method. The approach is implemented in form of a software plugin for the Psi4 code, which provides access to a wide selection of basis sets as well as density functionals. We briefly outline the theoretical foundation and the key aspects of the plugin. Then, we use the plugin to simulate PP-NEXAFS spectra of thymine, a system already investigated by others and us. It is found that larger, extended basis sets are needed to obtain more accurate absolute resonance positions. We further demonstrate that, in contrast to ordinary NEXAFS simulations, where the choice of the density functional plays a minor role for the shape of the spectrum, for PP-NEXAFS simulations the choice of the density functional is important. Especially hybrid functionals (which could not be used straightforwardly before to simulate PP-NEXAFS spectra) and their amount of "Hartree-Fock like" exact exchange affects relative resonance positions in the spectrum.

9.
J Chem Phys ; 150(23): 234114, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31228917

ABSTRACT

High Harmonic Generation (HHG) is a nonlinear optical process that provides a tunable source for high-energy photons and ultrashort laser pulses. Recent experiments demonstrated that HHG spectroscopy may also be used as an analytical tool to discriminate between randomly oriented configurational isomers of polyatomic organic molecules, namely, between the cis- and trans-forms of 1,2-dichloroethene (DCE) [M. C. H. Wong et al., Phys. Rev. A 84, 051403 (2011)]. Here, we suggest as an economic and at the same time a reasonably accurate method to compute HHG spectra for polyatomic species, Time-Dependent Configuration Interaction Singles (TD-CIS) theory in combination with extended atomic orbital bases and different models to account for ionization losses. The HHG spectra are computed for aligned and unaligned cis- and trans-DCE. For the unaligned case, a coherent averaging over possible rotational orientations is introduced. Furthermore, using TD-CIS, possible differences between the HHG spectra of cis- and trans-DCE are studied. For aligned molecules, spectral differences between cis and trans emerge, which can be related to their different point group symmetries. For unaligned, randomly oriented molecules, we also find distinct HHG spectra in partial agreement with experiment. In addition to HHG response in the frequency space, we compute time-frequency HHG spectra to gain insight into which harmonics are emitted at which time. Further differences between the two isomers emerge, suggesting time-frequency HHG as another tool to discriminate configurational isomers.

10.
J Comput Chem ; 39(30): 2517-2525, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30365166

ABSTRACT

We use clusters for the modeling of local ion resonances caused by low energy charge carriers in STM-induced desorption of benzene derivates from Si(111)-7 × 7. We perform Born-Oppenheimer molecular dynamics for the charged systems assuming vertical transitions to the charged states at zero temperature, to rationalize the low temperature activation energies, which are found in experiment for chlorobenzene. Our calculations suggest very similar low temperature activation energies for toluene and benzene. For the cationic resonance transitions to physisorption are found even at 0 K, while the anion remains chemisorbed during the propagations. Further, we also extend our previous static quantum chemical investigations to toluene and benzene. In addition, an in depth analysis of the ionization potentials and electron affinities, which are used to estimate resonance energies, is given. © 2018 Wiley Periodicals, Inc.

11.
J Comput Chem ; 38(2): 116-126, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27862049

ABSTRACT

Near edge X-ray absorption fine structure (NEXAFS) simulations based on the conventional configuration interaction singles (CIS) lead to excitation energies, which are systematically blue shifted. Using a (restricted) open shell core hole reference instead of the Hartree Fock (HF) ground state orbitals improves (Decleva et al., Chem. Phys., 1992, 168, 51) excitation energies and the shape of the spectra significantly. In this work, we systematically vary the underlying SCF approaches, that is, based on HF or density functional theory, to identify best suited reference orbitals using a series of small test molecules. We compare the energies of the K edges and NEXAFS spectra to experimental data. The main improvement compared to conventional CIS, that is, using HF ground state orbitals, is due to the electrostatic influence of the core hole. Different SCF approaches, density functionals, or the use of fractional occupations lead only to comparably small changes. Furthermore, to account for bigger systems, we adapt the core-valence separation for our approach. We demonstrate that the good quality of the spectrum is not influenced by this approximation when used together with the non-separated ground state wave function. Simultaneously, the computational demands are reduced remarkably. © 2016 Wiley Periodicals, Inc.

12.
J Chem Phys ; 144(4): 044301, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26827211

ABSTRACT

We combine the stochastic pulse optimization (SPO) scheme with the time-dependent configuration interaction singles method in order to control the high frequency response of a simple molecular model system to a tailored femtosecond laser pulse. For this purpose, we use H2 treated in the fixed nuclei approximation. The SPO scheme, as similar genetic algorithms, is especially suited to control highly non-linear processes, which we consider here in the context of high harmonic generation. Here, we will demonstrate that SPO can be used to realize a "non-harmonic" response of H2 to a laser pulse. Specifically, we will show how adding low intensity side frequencies to the dominant carrier frequency of the laser pulse and stochastically optimizing their contribution can create a high-frequency spectral signal of significant intensity, not harmonic to the carrier frequency. At the same time, it is possible to suppress the harmonic signals in the same spectral region, although the carrier frequency is kept dominant during the optimization.

13.
J Phys Chem A ; 118(33): 6699-704, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-24914960

ABSTRACT

Motivated by recent atomic manipulation experiments, we report quantum chemical calculations for chemi- and physisorption minima of chlorobenzene on the Si(111)-7×7 surface. A density functional theory cluster approach is applied, using the B3LYP hybrid functional alongside Grimme's empirical dispersion corrections (D3). We were able to identify chemisorption sites of binding energies of 1.6 eV and physisorption energies of 0.6 eV, both in encouraging agreement with the trend of experimental data. The cluster approach opens up the possibility of a first-principles based dynamical description of STM manipulation experiments on this system, the interpretation of which involves both the chemi- and physisorbed states. However, we found that special care has to be taken regarding the choice of clusters, basis sets, and the evaluation of the dispersion corrections.

14.
J Chem Phys ; 140(2): 024701, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24437896

ABSTRACT

High conductivity and a tunability of the band gap make quasi-one-dimensional graphene nanoribbons (GNRs) highly interesting materials for the use in field effect transistors. Especially bottom-up fabricated GNRs possess well-defined edges which is important for the electronic structure and accordingly the band gap. In this study we investigate the formation of a sub-nanometer wide armchair GNR generated on a Au(111) surface. The on-surface synthesis is thermally activated and involves an intermediate non-aromatic polymer in which the molecular precursor forms polyanthrylene chains. Employing angle-resolved two-photon photoemission in combination with density functional theory calculations we find that the polymer exhibits two dispersing states which we attribute to the valence and the conduction band, respectively. While the band gap of the non-aromatic polymer obtained in this way is relatively large, namely 5.25 ± 0.06 eV, the gap of the corresponding aromatic GNR is strongly reduced which we attribute to the different degree of electron delocalization in the two systems.

15.
Chemphyschem ; 14(7): 1471-8, 2013 May 10.
Article in English | MEDLINE | ID: mdl-23426934

ABSTRACT

We investigate the recombinative desorption of hydrogen and deuterium from a Ru(0001) surface initiated by femtosecond laser pulses. We adopt a quantum mechanical two-state model including three molecular degrees of freedom to describe the dynamics within the desorption induced by electronic transition (DIET) limit. The energy distributions as well as the state-resolved and ensemble properties of the desorbed molecules are analyzed in detail by using the time-energy method. Our results shed light on the experimentally observed 1) large isotopic effects regarding desorption yields and translational energies and 2) the nonequal energy partitioning into internal and translational modes. In particular, it is shown that a single temperature is sufficient to characterize the energy distributions for all degrees of freedom. Further, we confirm that quantization effects play an important role in the determination of the energy partitioning.


Subject(s)
Deuterium/chemistry , Hydrogen/chemistry , Lasers , Quantum Theory , Ruthenium/chemistry , Surface Properties , Time Factors
16.
Chemistry ; 18(34): 10506-10, 2012 Aug 20.
Article in English | MEDLINE | ID: mdl-22807148

ABSTRACT

Copper chemodosimeters: The copper(II)-promoted air oxidation of 1-3 to form 4-6 permits the highly selective colorimetric detection of Cu(2+) ions. The formation of copper(II) complexes of 4-6 proceeds rapidly, and the chemodosimeters 1-3 are viable at physiological pH.


Subject(s)
Copper/analysis , Nitriles/chemical synthesis , Pyridines/chemical synthesis , Colorimetry , Copper/chemistry , Hydrogen-Ion Concentration , Nitriles/chemistry , Oxidation-Reduction , Pyridines/chemistry , Spectrophotometry, Ultraviolet/methods
17.
J Chem Phys ; 136(9): 094705, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22401466

ABSTRACT

The switching of single cyclooctadiene molecules chemisorbed on a Si(100) surface between two stable conformations, can be achieved with a scanning tunneling microscope [Nacci et al., Phys. Rev. B 77, 121405(R) (2008)]. Recently, it was shown by quantum chemical and quantum dynamical simulations that major experimental facts can be explained by a single-mode model with switching enforced by inelastic electron tunneling (IET) excitations and perturbed by vibrational relaxation [Nacci et al., Nano Lett. 9, 2997 (2009)]. In the present paper, we extend the previous theoretical work in several respects: (1) The model is generalized to a two-mode description in which two C(2)H(4) units of COD can move independently; (2) contributions of dipole and, in addition, (cation and anion) resonance-IET rates are considered; (3) the harmonic-linear vibrational relaxation model used previously is generalized to anharmonic vibrations. While the present models highlight generic aspects of IET-switching between two potential minima, they also rationalize specific experimental findings for COD/Si(100): (1) A single-electron excitation mechanism with a linear dependence of the switching rate on tunneling current I, (2) the capability to switch both at negative and positive sample biases, and (3) a crossover temperature around ~60 K from an IET-driven, T-independent atom tunneling regime, to classical over-the-barrier isomerization with exponential T-dependence at higher temperatures for a bias voltage of +1.5 V and an average tunneling current of 0.73 nA.

18.
Phys Chem Chem Phys ; 13(48): 21608-14, 2011 Dec 28.
Article in English | MEDLINE | ID: mdl-22071571

ABSTRACT

Based on the analysis of optical absorption spectra, it has recently been speculated that the excitonic coupling between individual azobenzene-functionalized alkanethiols arranged in a self-assembled monolayer (SAM) on a gold surface could be strong enough to hinder collective trans-cis isomerization-on top of steric hindrance [Gahl et al., J. Am. Chem. Soc., 2010, 132, 1831]. Using models of SAMs of increasing complexity (dimer, linear N-mers, and two-dimensionally arranged N-mers) and density functional theory on the (TD-) B3LYP/6-31G* level, we determine optical absorption spectra, the nature and magnitude of excitonic couplings, and the corresponding spectral shifts. It is found that at inter-monomer distances of about 20 Å and above, TD-B3LYP excitation frequencies (and signal intensities) can be well described by the frequently used point-dipole approximation. Further, calculated blue shifts in optical absorption spectra account for the experimental observations made for azobenzene/gold SAMs, and hint to the fact that they can indeed be responsible for reduced switching probability in densely packed self-assembled structures.

19.
Phys Chem Chem Phys ; 13(30): 13537-43, 2011 Aug 14.
Article in English | MEDLINE | ID: mdl-21617795

ABSTRACT

The formation of CuCl nanoplatelets from the ionic liquid precursor (ILP) butylpyridinium tetrachlorocuprate [C(4)Py](2)[CuCl(4)] using ascorbic acid as a reducing agent was investigated. In particular, electron paramagnetic resonance (EPR) spectroscopy was used to evaluate the interaction between ascorbic acid and the Cu(II) ion before reduction to Cu(I). EPR spectroscopy suggests that the [CuCl(4)](2-) ion in the neat IL is a distorted tetrahedron, consistent with DFT calculations. Addition of ascorbic acid leads to the removal of one chloride from the [CuCl(4)](2-) anion, as shown by DFT and the loss of symmetry by EPR. DFT furthermore suggests that the most stable adduct is formed when only one hydroxyl group of the ascorbic acid coordinates to the Cu(II) ion.

20.
Phys Chem Chem Phys ; 13(19): 8659-70, 2011 May 21.
Article in English | MEDLINE | ID: mdl-21369575

ABSTRACT

An electronic friction approach based on Langevin dynamics is used to describe the multidimensional (six-dimensional) dynamics of femtosecond laser induced desorption of H(2) and D(2) from a H(D)-covered Ru(0001) surface. The paper extends previous reduced-dimensional models, using a similar approach. In the present treatment forces and frictional coefficients are calculated from periodic density functional theory (DFT) and essentially parameter-free, while the action of femtosecond laser pulses on the metal surface is treated by using the two-temperature model. Our calculations shed light on the performance and validity of various adiabatic, non-adiabatic, and Arrhenius/Kramers type kinetic models to describe hot-electron mediated photoreactions at metal surfaces. The multidimensional frictional dynamics are able to reproduce and explain known experimental facts, such as strong isotope effects, scaling of properties with laser fluence, and non-equipartitioning of vibrational, rotational, and translational energies of desorbing species. Further, detailed predictions regarding translations are made, and the question for the controllability of photoreactions at surfaces with the help of vibrational preexcitation is addressed.


Subject(s)
Deuterium/chemistry , Electrons , Hydrogen/chemistry , Lasers , Quantum Theory , Ruthenium/chemistry , Adsorption , Surface Properties , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...