Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Converg Sci Phys Oncol ; 4(1)2018 Mar.
Article in English | MEDLINE | ID: mdl-30627438

ABSTRACT

Tumor progression modeling offers the potential to predict tumor-spreading behavior to improve prognostic accuracy and guide therapy development. Common simulation methods include continuous reaction-diffusion (RD) approaches that capture mean spatio-temporal tumor spreading behavior and discrete agent-based (AB) approaches which capture individual cell events such as proliferation or migration. The brain cancer glioblastoma (GBM) is especially appropriate for such proliferation-migration modeling approaches because tumor cells seldom metastasize outside of the central nervous system and cells are both highly proliferative and migratory. In glioblastoma research, current RD estimates of proliferation and migration parameters are derived from computed tomography or magnetic resonance images. However, these estimates of glioblastoma cell migration rates, modeled as a diffusion coefficient, are approximately 1-2 orders of magnitude larger than single-cell measurements in animal models of this disease. To identify possible sources for this discrepancy, we evaluated the fundamental RD simulation assumptions that cells are point-like structures that can overlap. To give cells physical size (~10 µm), we used a Brownian dynamics approach that simulates individual single-cell diffusive migration, growth, and proliferation activity via a gridless, off-lattice, AB method where cells can be prohibited from overlapping each other. We found that for realistic single-cell parameter growth and migration rates, a non-overlapping model gives rise to a jammed configuration in the center of the tumor and a biased outward diffusion of cells in the tumor periphery, creating a quasi-ballistic advancing tumor front. The simulations demonstrate that a fast-progressing tumor can result from minimally diffusive cells, but at a rate that is still dependent on single-cell diffusive migration rates. Thus, modeling with the assumption of physically-grounded volume conservation can account for the apparent discrepancy between estimated and measured diffusion of GBM cells and provide a new theoretical framework that naturally links single-cell growth and migration dynamics to tumor-level progression.

3.
Cell Rep ; 18(1): 23-31, 2017 01 03.
Article in English | MEDLINE | ID: mdl-28052252

ABSTRACT

While several studies link the cell-surface marker CD44 to cancer progression, conflicting results show both positive and negative correlations with increased CD44 levels. Here, we demonstrate that the survival outcomes of genetically induced glioma-bearing mice and of high-grade human glioma patients are biphasically correlated with CD44 level, with the poorest outcomes occurring at intermediate levels. Furthermore, the high-CD44-expressing mesenchymal subtype exhibited a positive trend of survival with increased CD44 level. Mouse cell migration rates in ex vivo brain slice cultures were also biphasically associated with CD44 level, with maximal migration corresponding to minimal survival. Cell simulations suggest that cell-substrate adhesiveness is sufficient to explain this biphasic migration. More generally, these results highlight the potential importance of non-monotonic relationships between survival and biomarkers associated with cancer progression.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Movement , Glioma/metabolism , Glioma/pathology , Hyaluronan Receptors/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Humans , Mice, Inbred C57BL , Survival Analysis , Transposases/metabolism
4.
J Neural Eng ; 5(2): 221-31, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18503105

ABSTRACT

Trauma sustained to the central nervous system is a debilitating problem for thousands of people worldwide. Neuronal regeneration within the central nervous system is hindered by several factors, making a multi-faceted approach necessary. Two factors contributing to injury are the irregular geometry of injured sites and the absence of tissue to hold potential nerve guides and drug therapies. Biocompatible hydrogels, injectable at room temperature, that rapidly solidify at physiological temperatures (37 degrees C) are beneficial materials that could hold nerve guidance channels in place and be loaded with therapeutic agents to aid wound healing. Our studies have shown that thermoreversible methylcellulose can be combined with agarose to create hydrogel blends that accommodate these properties. Three separate novel hydrogel blends were created by mixing methylcellulose with one of the three different agaroses. Gelation time tests show that the blends solidify at a faster rate than base methylcellulose at 37 degrees C. Rheological data showed that the elastic modulus of the hydrogel blends rapidly increases at 37 degrees C. Culturing experiments reveal that the morphology of dissociated dorsal root ganglion neurons was not altered when the hydrogels were placed onto the cells. The different blends were further assessed using dissolution tests, pore size evaluations using scanning electron microscopy and measuring the force required for injection. This research demonstrates that blends of agarose and methylcellulose solidify much more quickly than plain methylcellulose, while solidifying at physiological temperatures where agarose cannot. These hydrogel blends, which solidify at physiological temperatures naturally, do not require ultraviolet light or synthetic chemical cross linkers to facilitate solidification. Thus, these hydrogel blends have potential use in delivering therapeutics and holding scaffolding in place within the nervous system.


Subject(s)
Biocompatible Materials/chemistry , Ganglia, Spinal/cytology , Ganglia, Spinal/physiology , Guided Tissue Regeneration/methods , Hydrogels/chemistry , Methylcellulose/chemistry , Nerve Regeneration/physiology , Sepharose/chemistry , Animals , Cells, Cultured , Chick Embryo , Guided Tissue Regeneration/instrumentation , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL
...