Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Gene Med ; 12(7): 613-23, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20603890

ABSTRACT

BACKGROUND: Expression profile analyses of midkine (MDK), a multifunctional protein important in development but repressed postnataly, indicate that it is highly expressed in approximately 80% of adult carcinomas and many childhood cancers including malignant peripheral nerve sheath tumors (MPNST). In the present study, we sought to leverage its selective expression to develop a novel oncolytic herpes simplex virus (oHSV) capable of targeting developmentally primitive cancers that express MDK. METHODS: We sought to increase the oncolytic efficacy of the virus by fusing the human MDK promoter to the HSV type 1 neurovirulence gene, gamma(1)34.5, whose protein product increases viral replication. RESULTS: Tissue-specific MDK promoter activity in human tumor cells and transgene biological activity was confirmed in human MPNST tumor cells. In vitro replication and cytotoxicity in human fibroblasts and MPNST cells by plaque and MTT assays showed that oHSV-MDK-34.5 increased replication and cytotoxicity compared to oHSV-MDK-Luc. By contrast, no significant difference in cytotoxicity was detected between these viruses in normal human fibroblasts. oHSV-MDK-34.5 impaired in vivo tumor growth and increased median survival of MPNST tumor-bearing nude mice. CONCLUSIONS: The transcriptional targeting of HSV lytic infection to MDK-expressing tumor cells is feasible. oHSV-MDK-34.5 shows enhanced anti-tumor effects both in vitro and in vivo. Further studies are warranted and may lead to its use in clinical trials.


Subject(s)
Genetic Engineering/methods , Herpesvirus 1, Human/genetics , Nerve Growth Factors/metabolism , Nerve Sheath Neoplasms/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Transcription, Genetic , Animals , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/pathology , Cytotoxicity, Immunologic , Female , Gene Knockdown Techniques , Herpesvirus 1, Human/physiology , Humans , Luciferases/genetics , Mice , Mice, Nude , Midkine , Nerve Sheath Neoplasms/genetics , Oncolytic Viruses/physiology , RNA, Small Interfering/metabolism , Survival Analysis , Transgenes/genetics , Virus Replication/physiology , Xenograft Model Antitumor Assays
2.
J Clin Invest ; 117(8): 2225-32, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17671652

ABSTRACT

Recent reports have challenged the notion that retroviruses and retroviral vectors integrate randomly into the host genome. These reports pointed to a strong bias toward integration in and near gene coding regions and, for gammaretroviral vectors, around transcription start sites. Here, we report the results obtained from a large-scale mapping of 572 retroviral integration sites (RISs) isolated from cells of 9 patients with X-linked SCID (SCID-X1) treated with a retrovirus-based gene therapy protocol. Our data showed that two-thirds of insertions occurred in or very near to genes, of which more than half were highly expressed in CD34(+) progenitor cells. Strikingly, one-fourth of all integrations were clustered as common integration sites (CISs). The highly significant incidence of CISs in circulating T cells and the nature of their locations indicate that insertion in many gene loci has an influence on cell engraftment, survival, and proliferation. Beyond the observed cases of insertional mutagenesis in 3 patients, these data help to elucidate the relationship between vector insertion and long-term in vivo selection of transduced cells in human patients with SCID-X1.


Subject(s)
Gammaretrovirus , Genetic Therapy , Genetic Vectors , Genome, Human , Lymphopoiesis/genetics , Virus Integration/genetics , X-Linked Combined Immunodeficiency Diseases/therapy , Antigens, CD34 , Cell Proliferation , Cell Survival/genetics , Hematopoietic Stem Cells/metabolism , Humans , Mutagenesis, Insertional , Quantitative Trait Loci , T-Lymphocytes , Time Factors , X-Linked Combined Immunodeficiency Diseases/genetics
3.
J Gen Virol ; 87(Pt 5): 1339-1347, 2006 May.
Article in English | MEDLINE | ID: mdl-16603537

ABSTRACT

Integration-site selection by retroviruses and retroviral vectors has gained increased scientific interest. Foamy viruses (FVs) constitute a unique subfamily (Spumavirinae) of the family Retroviridae, for which the integration pattern into the human genome has not yet been determined. To accomplish this, 293 cells were transduced with FV vectors and the integration sites into the cellular genome were determined by a high-throughput method based on inverse PCR. For comparison, a limited number of murine leukemia virus (MLV) and human immunodeficiency virus (HIV) integration sites were analysed in parallel. Altogether, 628 FV, 87 HIV and 141 MLV distinct integration sites were mapped to the human genome. The sequences were analysed for RefSeq genes, promoter regions, CpG islands and insertions into cellular oncogenes. Compared with the integration-site preferences of HIV, which strongly favours active genes, and MLV, which favours integration near transcription-start regions, our results indicate that FV integration has neither of these preferences. However, once integration has occurred into a transcribed region of the genome, FVs tend to target promoter-close regions, albeit with less preference than MLV. Furthermore, our study revealed a palindromic consensus sequence for integration, which was centred on the virus-specific, four-base-duplicated target site. In summary, it is shown that the integration pattern of FVs appears to be unique compared with those of other retroviral genera.


Subject(s)
Spumavirus/physiology , Cell Line , Genome/genetics , Humans , Kidney , Molecular Sequence Data , Promoter Regions, Genetic/genetics , Virus Integration
4.
Antimicrob Agents Chemother ; 49(8): 3428-34, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16048957

ABSTRACT

Bacterial methionine aminopeptidase (MAP) is a protease that removes methionine from the N termini of newly synthesized bacterial proteins after the peptide deformylase enzyme cleaves the formyl group from the initiator formylmethionine. MAP is an essential bacterial gene product and thus represents a potential target for therapeutic intervention. A fundamental challenge in the antibacterial drug discovery field is demonstrating conclusively that compounds with in vitro enzyme inhibition activity produce the desired antibacterial effect by interfering with the same target in whole bacterial cells. One way to address the activity of inhibitor compounds is by profiling cellular biomarkers in whole bacterial cells using compounds that are known inhibitors of a particular target. However, in the case of MAP, no specific inhibitors were available for such studies. Instead, a genetically attenuated MAP strain was generated in which MAP expression was placed under the control of an inducible arabinose promoter. Thus, MAP inhibition in whole cells could be mimicked by growth in the absence of arabinose. This genetically attenuated strain was used as a benchmark for MAP inhibition by profiling whole-cell lysates for unprocessed proteins using surface-enhanced laser desorption ionization-time of flight mass spectrometry (MS). Eight proteins between 4 and 14 kDa were confirmed as being unprocessed and containing the initiator methionine by adding back purified MAP to the preparations prior to MS analysis. Upon establishing these unprocessed proteins as biomarkers for MAP inhibition, the assay was used to screen small-molecule chemical inhibitors of purified MAP for whole-cell activity. Fifteen compound classes yielded three classes of compound with whole-cell activity for further optimization by chemical expansion. This report presents the development, validation, and implementation of a whole-cell inhibition assay for MAP.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Escherichia coli/cytology , Escherichia coli/growth & development , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Aminopeptidases/genetics , Aminopeptidases/metabolism , Bacterial Proteins/metabolism , Biomarkers/metabolism , Down-Regulation , Escherichia coli/drug effects , Escherichia coli/enzymology , Methionyl Aminopeptidases
SELECTION OF CITATIONS
SEARCH DETAIL
...