Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 200(12): 4012-4023, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29703862

ABSTRACT

Maintenance of the regulatory T (Treg) cell pool is essential for peripheral tolerance and prevention of autoimmunity. Integrins, heterodimeric transmembrane proteins consisting of α and ß subunits that mediate cell-to-cell and cell-to-extracellular matrix interactions, play an important role in facilitating Treg cell contact-mediated suppression. In this article, we show that integrin activation plays an essential, previously unappreciated role in maintaining murine Treg cell function. Treg cell-specific loss of talin, a ß integrin-binding protein, or expression of talin(L325R), a mutant that selectively abrogates integrin activation, resulted in lethal systemic autoimmunity. This dysfunction could be attributed, in part, to a global dysregulation of the Treg cell transcriptome. Activation of integrin α4ß1 led to increased suppressive capacity of the Treg cell pool, suggesting that modulating integrin activation on Treg cells may be a useful therapeutic strategy for autoimmune and inflammatory disorders. Taken together, these results reveal a critical role for integrin-mediated signals in controlling peripheral tolerance by virtue of maintaining Treg cell function.


Subject(s)
Integrins/immunology , Peripheral Tolerance/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Autoimmunity/immunology , Inflammation/immunology , Mice , Talin/immunology , Transcriptome/immunology
2.
J Immunol ; 198(12): 4639-4651, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28515282

ABSTRACT

Talin, a cytoskeletal protein essential in mediating integrin activation, has been previously shown to be involved in the regulation of T cell proliferation and function. In this study, we describe a role for talin in maintaining the homeostasis and survival of the regulatory T (Treg) cell pool. T cell-specific deletion of talin in Tln1fl/flCd4Cre mice resulted in spontaneous lymphocyte activation, primarily due to numerical and functional deficiencies of Treg cells in the periphery. Peripheral talin-deficient Treg cells were unable to maintain high expression of IL-2Rα, resulting in impaired IL-2 signaling and ultimately leading to increased apoptosis through downregulation of prosurvival proteins Bcl-2 and Mcl-1. The requirement for talin in maintaining high IL-2Rα expression by Treg cells was due, in part, to integrin LFA-1-mediated interactions between Treg cells and dendritic cells. Collectively, our data suggest a critical role for talin in Treg cell-mediated maintenance of immune homeostasis.


Subject(s)
Homeostasis , Lymphocyte Activation , Signal Transduction , T-Lymphocytes, Regulatory/immunology , Talin/metabolism , Animals , Apoptosis , Dendritic Cells/immunology , Genes, bcl-2 , Interleukin-2/immunology , Interleukin-2/metabolism , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/immunology , Lymphocyte Function-Associated Antigen-1/immunology , Lymphocyte Function-Associated Antigen-1/metabolism , Mice , Myeloid Cell Leukemia Sequence 1 Protein/genetics , T-Lymphocytes, Regulatory/physiology , Talin/deficiency , Talin/immunology
3.
ISME J ; 8(4): 908-24, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24225886

ABSTRACT

An unusual symbiosis, first observed at ~3000 m depth in the Monterey Submarine Canyon, involves gutless marine polychaetes of the genus Osedax and intracellular endosymbionts belonging to the order Oceanospirillales. Ecologically, these worms and their microbial symbionts have a substantial role in the cycling of carbon from deep-sea whale fall carcasses. Microheterogeneity exists among the Osedax symbionts examined so far, and in the present study the genomes of the two dominant symbionts, Rs1 and Rs2, were sequenced. The genomes revealed heterotrophic versatility in carbon, phosphate and iron uptake, strategies for intracellular survival, evidence for an independent existence, and numerous potential virulence capabilities. The presence of specific permeases and peptidases (of glycine, proline and hydroxyproline), and numerous peptide transporters, suggests the use of degraded proteins, likely originating from collagenous bone matter, by the Osedax symbionts. (13)C tracer experiments confirmed the assimilation of glycine/proline, as well as monosaccharides, by Osedax. The Rs1 and Rs2 symbionts are genomically distinct in carbon and sulfur metabolism, respiration, and cell wall composition, among others. Differences between Rs1 and Rs2 and phylogenetic analysis of chemotaxis-related genes within individuals of symbiont Rs1 revealed the influence of the relative age of the whale fall environment and support possible local niche adaptation of 'free-living' lifestages. Future genomic examinations of other horizontally-propogated intracellular symbionts will likely enhance our understanding of the contribution of intraspecific symbiont diversity to the ecological diversification of the intact association, as well as the maintenance of host diversity.


Subject(s)
Gammaproteobacteria/physiology , Genetic Variation , Genome, Bacterial/genetics , Polychaeta/microbiology , Adaptation, Physiological , Animals , Carbon Radioisotopes/analysis , Female , Gammaproteobacteria/classification , Gammaproteobacteria/genetics , Gammaproteobacteria/metabolism , Genes, Bacterial/genetics , Heterotrophic Processes , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...