Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-27557988

ABSTRACT

Thyroid hormones are involved in many developmental and physiological processes, including osmoregulation. The regulation of the thyroid system by environmental salinity in the euryhaline gilthead seabream (Sparus aurata) is still poorly characterized. To this end seabreams were exposed to four different environmental salinities (5, 15, 40 and 55ppt) for 14days, and plasma free thyroid hormones (fT3, fT4), outer ring deiodination and Na+/K+-ATPase activities in gills and kidney, as well as other osmoregulatory and metabolic parameters were measured. Low salinity conditions (5ppt) elicited a significant increase in fT3 (29%) and fT4 (184%) plasma concentrations compared to control animals (acclimated to 40ppt, natural salinity conditions in the Bay of Cádiz, Spain), while the amount of pituitary thyroid stimulating hormone subunit ß (tshb) transcript abundance remained unchanged. In addition, plasma fT4 levels were positively correlated to renal and branchial deiodinase type 2 (dio2) mRNA expression. Gill and kidney T4-outer ring deiodination activities correlated positively with dio2 mRNA expression and the highest values were observed in fish acclimated to low salinities (5 and 15ppt). The high salinity (55ppt) exposure caused a significant increase in tshb expression (65%), but deiodinase gene expression (dio1 and dio2) and activity did not change and were similar to controls (40ppt). In conclusion, acclimation to different salinities led to changes in the peripheral regulation of thyroid hormone metabolism in seabream. Therefore, thyroid hormones are involved in the regulation of ion transport and osmoregulatory physiology in this species. The conclusions derived from this study may also allow aquaculturists to modulate thyroid metabolism in seabream by adjusting culture salinity.


Subject(s)
Salinity , Sea Bream/physiology , Thyroid Gland/physiology , Algorithms , Animals , Real-Time Polymerase Chain Reaction , Thyroxine/blood
2.
Gen Comp Endocrinol ; 155(3): 796-803, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-17950731

ABSTRACT

The peripheral conversion of the prohormone 3,5,3',5'-tetraiodothyronine (T4) to the biologically active 3,5,3'-triiodothyronine (T3), via enzymatic deiodination by deiodinases, is an important pathway in thyroid hormone metabolism. The aim of this study was to test if thyroid hormones and cortisol, as well as the outer ring deiodination (ORD) metabolic pathway, are involved in the osmoregulatory response of Senegalese sole (Solea senegalensis, Kaup 1858). We measured osmoregulatory and endocrine parameters in immature juveniles S. senegalensis acclimated to seawater (SW, 38 per thousand) and that were transferred and allowed to acclimate to different salinities (5 per thousand, 15 per thousand, 38 per thousand and 55 per thousand) for 17 days. An adjustment and a chronic regulatory period were identified following acclimation. The adjustment period immediately follows the transfer, and is characterized by altered plasma osmolalities. During this period, plasma cortisol levels increased while plasma free T4 (fT4) levels decreased. Both hormones levels returned to normal values on day 3 post-transfer. In the adjustment period, renal and hepatic ORD activities had increased concomitantly with the decrease in plasma fT4 levels in fishes transferred to extreme salinities (5 per thousand and 55 per thousand). In the chronic regulatory period, where plasma osmolality returned to normal values, plasma cortisol had increased, whereas plasma fT4 levels decreased in animals that were transferred to salinities other than SW. No major changes were observed in branchial ORD activity throughout the experiment. The inverse relationship between plasma cortisol and fT4 suggests an interaction between these hormones during both osmoregulatory periods while ORD pathway can be important in the short-term adjustment period.


Subject(s)
Acclimatization/physiology , Flatfishes/physiology , Hydrocortisone/physiology , Thyroid Hormones/physiology , Water-Electrolyte Balance/physiology , Animals , Flatfishes/blood , Flatfishes/metabolism , Gills/enzymology , Gills/metabolism , Hydrocortisone/blood , Iodide Peroxidase/metabolism , Kidney/enzymology , Kidney/metabolism , Liver/enzymology , Liver/metabolism , Osmosis , Salinity , Sodium-Potassium-Exchanging ATPase/metabolism , Thyroid Hormones/blood , Thyroid Hormones/metabolism
3.
J Endocrinol ; 181(3): 393-400, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15171687

ABSTRACT

We have investigated the hypothesis that uridine 5'-diphosphate (UDP)-glucuronyltransferases (UGTs) and beta-glucuronidase are jointly involved in a mechanism for the storage and mobilization of iodothyronine metabolites in liver, kidney, heart and brain. Specifically, we predicted UGT activities to decrease and increase respectively, and beta-glucuronidase activity to increase and decrease respectively in hypo- and hyperthyroidism. To this end we have studied the effects of thyroid status on the activities of different enzymes involved in thyroid hormone metabolism in liver, kidney, heart and brain from adult rats with experimentally induced hypo- and hyperthyroidism. We used whole organ homogenates to determine the specific enzyme activities of phenol- and androsteron-UGT, beta-glucuronidase, as well as iodothyronine deiodinase types I and II. Deiodinase type I activities in liver and kidney were decreased in hypothyroid animals and, in liver only, increased in hyperthyroidism. Deiodinase type II activity was increased in hyperthyroid rat kidney only. Interestingly, in the heart, deiodinase type I-specific activity was increased fourfold, although the increase was not statistically significant. Cardiac deiodinase type I activity was detectable but not sensitive to thyroid status. Hepatic phenol-UGT as well as androsteron-UGT activities were decreased in hypothyroid rats, with specific androsteron-UGT activities two to three orders of magnitude lower than phenol-UGT activities. Both UGT isozymes were well above detection limits in heart, but appeared to be insensitive to thyroid status. In contrast, cardiac beta-glucuronidase activity decreased in hypothyroid tissue, whereas the activity of this enzyme in the other organs investigated did not change significantly. In summary, cardiac beta-glucuronidase, albeit in low levels, and hepatic phenol-UGT activities were responsive only to experimental hypothyroidism. Although a high basal activity of the pleiotropic beta-glucuronidase masking subtle activity changes in response to thyroid status cannot be ruled out, we conclude that hepatic, renal and cardiac UGT and beta-glucuronidase activities are not regulated reciprocally with thyroid status.


Subject(s)
Glucuronidase/metabolism , Glucuronosyltransferase/metabolism , Iodide Peroxidase/metabolism , Isoenzymes/metabolism , Myocardium/enzymology , Thyroid Diseases/enzymology , Animals , Brain/enzymology , Glucuronosyltransferase/antagonists & inhibitors , Hyperthyroidism/enzymology , Hypothyroidism/enzymology , Kidney/enzymology , Liver/enzymology , Models, Animal , Ouabain/metabolism , Pentachlorophenol/pharmacology , Rats , Rats, Wistar
4.
Avian Pathol ; 32(6): 625-32, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14676014

ABSTRACT

Iron overload is a very frequent finding in several animal species and a genetic predisposition is suggested. In one of the most commonly reported species with susceptibility for iron overload (mynah bird), it was recently shown that the cause of this pathophysiology is high uptake and retention of dietary iron. Here we compare susceptible (mynahs) with non-susceptible avian species (chickens) by evaluating iron uptake at the intestinal absorptive cell level. Enterocytes from mynahs and chickens were isolated and uptake of Fe(II) and Fe(III) was studied in vitro. It was found that Fe(III) uptake is much lower than Fe(II) uptake for both species. Although liver iron, present only in hepatocytes, was at least 10-fold higher in mynahs than chickens, enterocyte Fe(II) uptake was considerably higher in mynahs. Fe(II) uptake showed saturation at the studied concentrations in both species. Kinetic studies revealed a three-fold increase in Vmax for mynahs. Calculated values for the uptake kinetics of the probable membrane transporter suggest that mynah bird enterocytes have a significantly higher limiting uptake rate, due to the possible increase in the number of transporters when compared with chicken enterocytes. The susceptibility of this species is due to intestinal iron uptake despite hepatic iron accumulation, implicating a 'mis-sensing' of body iron similarly to human hereditary haemochromatosis.


Subject(s)
Bird Diseases/metabolism , Iron Overload/veterinary , Iron, Dietary/pharmacokinetics , Iron/metabolism , Songbirds/metabolism , Animals , Bird Diseases/genetics , Chickens/genetics , Chickens/metabolism , Enterocytes/metabolism , Female , Genetic Predisposition to Disease , Hemochromatosis/metabolism , Hepatocytes/metabolism , Humans , Intestinal Absorption , Iron/chemistry , Iron Overload/genetics , Iron Overload/metabolism , Liver/metabolism , Male , Organ Specificity , Songbirds/genetics , Species Specificity
5.
J Endocrinol ; 175(3): 587-96, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12475370

ABSTRACT

Uptake of tri-iodothyronine (T(3)) was compared with that of thyroxine (T(4)) in the embryonic heart cell line H9c2 (2-1). These cells propagate as myoblasts and form differentiated myotubes upon reduction of the serum concentration, as indicated by a 31-fold increase in creatine kinase activity. Protein and DNA content per well were around 2-fold higher in myotubes than in myoblasts. When expressed per well, T(3) and T(4) uptake were, compared with myoblasts, 1.9- to 2-fold and 3.1- to 4-fold higher in myotubes respectively. On the other hand, the characteristics of T(3) and T(4) uptake were similar in myoblasts and myotubes. At any time-point, T(4) uptake was 2-fold higher than that of T(3), and both uptakes were energy but not Na(+) dependent. T(3) and T(4) uptake exhibited mutual inhibition in myoblasts and myotubes: 10 microM unlabeled T(3) reduced T(4) uptake by 51-60% (P<0.001), while 10 microM T(4) inhibited T(3) uptake by 48-51% (P<0.001). Furthermore, T(3) and T(4) uptake in myoblasts was dose-dependently inhibited by tryptophan (maximum inhibition around 70%; P<0.001). Exposure of the cells to T(3) or T(4) during differentiation significantly increased the fusion index (35 and 40%; P < 0.01). Finally, both myoblasts and myotubes showed a small deiodinase type I activity, while deiodinase type II activity was undetectable. In conclusion, T(3) and T(4) share a common energy-dependent transport system in H9c2(2-1) cells, that may be important for the availability of thyroid hormone during differentiation.


Subject(s)
Heart/embryology , Myoblasts, Cardiac/metabolism , Thyroxine/metabolism , Triiodothyronine/metabolism , Analysis of Variance , Animals , Cell Line , Embryonic Induction/physiology , Iodide Peroxidase/metabolism , Microscopy, Phase-Contrast , Rats
6.
J Endocrinol ; 174(1): 111-9, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12098669

ABSTRACT

We have investigated the potential role of fibroblasts in local thyroid hormone metabolism in neonatal rat heart. Incubation of cardiac fibroblasts with thyroxine (T4) or 3,5,3'-tri-iodothyronine (T3) resulted in the appearance of water-soluble metabolites, whereas incubation of cardiomyocytes under the same conditions did not or did so to a much lesser extent. Time-course studies showed that production is already evident after 1-5 h of exposure and that the process equilibrates after 24-48 h. Analysis of the products revealed both the T4 and the T3 metabolites to be glucuronides. These results were corroborated by the detection of uridine diphosphate (UDP)-glucuronyltransferase activity in cardiac fibroblasts. We found no indication for outer ring deiodination in fibroblasts, cardiomyocytes or heart homogenates. From these results we have concluded that cardiac fibroblasts, but not cardiomyocytes, are able to glucuronidate T4 and T3 and secrete the conjugates. This could play a role in local metabolism, e.g. to protect the heart tissue from high levels of thyroid hormones.


Subject(s)
Fibroblasts/metabolism , Myocardium/metabolism , Rats, Wistar/metabolism , Thyroxine/metabolism , Triiodothyronine/metabolism , Animals , Animals, Newborn , Cells, Cultured , Glucuronidase/metabolism , Glucuronides/biosynthesis , Hydrolysis , Myocardium/cytology , Rats , Sulfates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...