Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 178(13): 2709-2726, 2021 07.
Article in English | MEDLINE | ID: mdl-33782947

ABSTRACT

BACKGROUND AND PURPOSE: The µ-opioid receptor (µ receptor) is the primary target for opioid analgesics. The 7-transmembrane (TM) and 6TM µ receptor isoforms mediate inhibitory and excitatory cellular effects. Here, we developed compounds selective for 6TM- or 7TM-µ receptors to further our understanding of the pharmacodynamic properties of µ receptors. EXPERIMENTAL APPROACH: We performed virtual screening of the ZINC Drug Now library of compounds using in silico 7TM- and 6TM-µ receptor structural models and identified potential compounds that are selective for 6TM- and/or 7TM-µ receptors. Subsequently, we characterized the most promising candidate compounds in functional in vitro studies using Be2C neuroblastoma transfected cells, behavioural in vivo pain assays using various knockout mice and in ex vivo electrophysiology studies. KEY RESULTS: Our virtual screen identified 30 potential candidate compounds. Subsequent functional in vitro cellular assays shortlisted four compounds (#5, 10, 11 and 25) that demonstrated 6TM- or 7TM-µ receptor-dependent NO release. In in vivo pain assays these compounds also produced dose-dependent hyperalgesic responses. Studies using mice that lack specific opioid receptors further established the µ receptor-dependent nature of identified novel ligands. Ex vivo electrophysiological studies on spontaneous excitatory postsynaptic currents in isolated spinal cord slices also validated the hyperalgesic properties of the most potent 6TM- (#10) and 7TM-µ receptor (#5) ligands. CONCLUSION AND IMPLICATIONS: Our novel compounds represent a new class of ligands for µ receptors and will serve as valuable research tools to facilitate the development of opioids with significant analgesic efficacy and fewer side-effects.


Subject(s)
Analgesics, Opioid , Receptors, Opioid, mu , Analgesics, Opioid/pharmacology , Animals , Mice , Mice, Knockout , Pain , Protein Isoforms
2.
Pain ; 161(10): 2330-2343, 2020 10.
Article in English | MEDLINE | ID: mdl-32453136

ABSTRACT

Cancer cells secrete pronociceptive mediators that sensitize adjacent sensory neurons and cause pain. Identification and characterization of these mediators could pinpoint novel targets for cancer pain treatment. In this study, we identified candidate genes in cancer cell lines that encode for secreted or cell surface proteins that may drive nociception. To undertake this work, we used an acute cancer pain mouse model, transcriptomic analysis of publicly available human tumor-derived cell line data, and a literature review. Cancer cell line supernatants were assigned a phenotype based on evoked nociceptive behavior in an acute cancer pain mouse model. We compared gene expression data from nociceptive and nonnociceptive cell lines. Our analyses revealed differentially expressed genes and pathways; many of the identified genes were not previously associated with cancer pain signaling. Epidermal growth factor receptor (EGFR) and disintegrin metalloprotease domain 17 (ADAM17) were identified as potential targets among the differentially expressed genes. We found that the nociceptive cell lines contained significantly more ADAM17 protein in the cell culture supernatant compared to nonnociceptive cell lines. Cytoplasmic EGFR was present in almost all (>90%) tongue primary afferent neurons in mice. Monoclonal antibody against EGFR, cetuximab, inhibited cell line supernatant-induced nociceptive behavior in an acute oral cancer pain mouse model. We infer from these data that ADAM17-EGFR signaling is involved in cancer mediator-induced nociception. The differentially expressed genes and their secreted protein products may serve as candidate therapeutic targets for oral cancer pain and warrant further evaluation.


Subject(s)
Cancer Pain , Neoplasms , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Animals , Cancer Pain/genetics , Cell Line, Tumor , Disintegrins , ErbB Receptors/genetics , ErbB Receptors/metabolism , Mice , Signal Transduction
3.
Front Mol Neurosci ; 12: 217, 2019.
Article in English | MEDLINE | ID: mdl-31607857

ABSTRACT

Oral cancer patients report severe function-induced pain; severity is greater in females. We hypothesize that a neutrophil-mediated endogenous analgesic mechanism is responsible for sex differences in nociception secondary to oral squamous cell carcinoma (SCC). Neutrophils isolated from the cancer-induced inflammatory microenvironment contain ß-endorphin protein and are identified by the Ly6G+ immune marker. We previously demonstrated that male mice with carcinogen-induced oral SCC exhibit less nociceptive behavior and a higher concentration of neutrophils in the cancer microenvironment compared to female mice with oral SCC. Oral cancer cells secrete granulocyte colony stimulating factor (G-CSF), a growth factor that recruits neutrophils from bone marrow to the cancer microenvironment. We found that recombinant G-CSF (rG-CSF, 5 µg/mouse, intraperitoneal) significantly increased circulating Ly6G+ neutrophils in the blood of male and female mice within 24 h of administration. In an oral cancer supernatant mouse model, rG-CSF treatment increased cancer-recruited Ly6G+ neutrophil infiltration and abolished orofacial nociceptive behavior evoked in response to oral cancer supernatant in both male and female mice. Local naloxone treatment restored the cancer mediator-induced nociceptive behavior. We infer that rG-CSF-induced Ly6G+ neutrophils drive an endogenous analgesic mechanism. We then evaluated the efficacy of chronic rG-CSF administration to attenuate oral cancer-induced nociception using a tongue xenograft cancer model with the HSC-3 human oral cancer cell line. Saline-treated male mice with HSC-3 tumors exhibited less oral cancer-induced nociceptive behavior and had more ß-endorphin protein in the cancer microenvironment than saline-treated female mice with HSC-3 tumors. Chronic rG-CSF treatment (2.5 µg/mouse, every 72 h) increased the HSC-3 recruited Ly6G+ neutrophils, increased ß-endorphin protein content in the tongue and attenuated nociceptive behavior in female mice with HSC-3 tumors. From these data, we conclude that neutrophil-mediated endogenous opioids warrant further investigation as a potential strategy for oral cancer pain treatment.

4.
Pain ; 159(4): 749-763, 2018 04.
Article in English | MEDLINE | ID: mdl-29300278

ABSTRACT

The Human Pain Genetics Database (HPGDB) is a comprehensive variant-focused inventory of genetic contributors to human pain. After curation, the HPGDB currently includes 294 studies reporting associations between 434 distinct genetic variants and various pain phenotypes. Variants were then submitted to a comprehensive analysis. First, they were validated in an independent high-powered replication cohort by testing the association of each variant with 10 different pain phenotypes (n = 1320-26,973). One hundred fifty-five variants replicated successfully (false discovery rate 20%) in at least one pain phenotype, and the association P values of the HPGDB variants were significantly lower compared with those of random controls. Among the 155 replicated variants, 21 had been included in the HPGDB because of their association with analgesia-related and 13 with nociception-related phenotypes, confirming analgesia and nociception as pathways of vulnerability for pain phenotypes. Furthermore, many genetic variants were associated with multiple pain phenotypes, and the strength of their association correlated between many pairs of phenotypes. These genetic variants explained a considerable amount of the variance between different pairs of pain phenotypes, indicating a shared genetic basis among pain phenotypes. In addition, we found that HPGDB variants show many pleiotropic associations, indicating that genetic pathophysiological mechanisms are also shared among painful and nonpainful conditions. Finally, we demonstrated that the HPGDB data set is significantly enriched for functional variants that modify gene expression, are deleterious, and colocalize with open chromatin regions. As such, the HPGDB provides a validated data set that represents a valuable resource for researchers in the human pain field.


Subject(s)
Databases, Genetic , Genetic Pleiotropy/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Pain/genetics , Female , Genetic Association Studies , Humans , Male , PubMed/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...