Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Opt Lett ; 48(10): 2647-2650, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37186730

ABSTRACT

We report the nonlinear pulse compression of a high-power, thulium-doped fiber laser system using a gas-filled hollow-core fiber. The sub-two cycle source delivers 1.3 mJ pulse energy with 80 GW peak power at a central wavelength of 1.87 µm and an average power of 132 W. This is, so far, to the best of our knowledge, the highest average power of a few-cycle laser source reported in the short-wave infrared region. Given its unique combination of high pulse energy and high average power, this laser source is an excellent driver for nonlinear frequency conversion, toward terahertz, mid-infrared, and soft X-ray spectral regions.

2.
Opt Express ; 31(9): 14212-14224, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37157290

ABSTRACT

We present high-speed and wide-field EUV ptychography at 13.5 nm wavelength using a table-top high-order harmonic source. Compared to previous measurements, the total measurement time is significantly reduced by up to a factor of five by employing a scientific complementary metal oxide semiconductor (sCMOS) detector that is combined with an optimized multilayer mirror configuration. The fast frame rate of the sCMOS detector enables wide-field imaging with a field of view of 100 µm × 100 µm with an imaging speed of 4.6 Mpix/h. Furthermore, fast EUV wavefront characterization is employed using a combination of the sCMOS detector with orthogonal probe relaxation.

3.
Opt Lett ; 48(5): 1300-1303, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36857273

ABSTRACT

A gas-filled multipass-cell-based post-compression of 515 nm wavelength second-harmonic pulses of an Yb:fiber laser from 240 fs to 15.7 fs is presented. The system delivers 0.44 mJ of pulse energy, 22.4 W of average power at 50.8 kHz with an overall efficiency of more than 40%. These results display the capabilities of multipass-cell-based post-compression schemes to move from the well-established near infrared spectral region to the undeveloped visible regime, allowing for high efficiencies in conjunction with energetic ultrashort pulses at high repetition rates. The unique combination of parameters in the green spectral range offers an immense potential for future developments of high photon flux higher-order harmonic sources.

4.
Opt Express ; 31(2): 2744-2753, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36785281

ABSTRACT

In this work, a continuously tunable extreme ultraviolet source delivering a state-of-the-art photon flux of >1011 ph/s/eV spanning from 50 eV to 70 eV is presented. The setup consists of a high-power fiber laser with a subsequent multipass cell followed by a waveguide-based high harmonic generation setup. Spectral tuning over the full line spacing is achieved by slightly adjusting the lasers driving pulse energy, utilizing nonlinear propagation effects and pulse chirping. The presented method enables a high tuning speed while delivering reproducible and reliable results due to a simple experimental realization. For possible future experiments, a method for continuous, on-demand pulse-to-pulse switching of the generated XUV radiation with full spectral coverage is conceived.

5.
Light Sci Appl ; 11(1): 117, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35487910

ABSTRACT

Microscopy with extreme ultraviolet (EUV) radiation holds promise for high-resolution imaging with excellent material contrast, due to the short wavelength and numerous element-specific absorption edges available in this spectral range. At the same time, EUV radiation has significantly larger penetration depths than electrons. It thus enables a nano-scale view into complex three-dimensional structures that are important for material science, semiconductor metrology, and next-generation nano-devices. Here, we present high-resolution and material-specific microscopy at 13.5 nm wavelength. We combine a highly stable, high photon-flux, table-top EUV source with an interferometrically stabilized ptychography setup. By utilizing structured EUV illumination, we overcome the limitations of conventional EUV focusing optics and demonstrate high-resolution microscopy at a half-pitch lateral resolution of 16 nm. Moreover, we propose mixed-state orthogonal probe relaxation ptychography, enabling robust phase-contrast imaging over wide fields of view and long acquisition times. In this way, the complex transmission of an integrated circuit is precisely reconstructed, allowing for the classification of the material composition of mesoscopic semiconductor systems.

6.
Opt Express ; 29(14): 21859-21875, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34265964

ABSTRACT

Dual Comb Spectroscopy proved its versatile capabilities in molecular fingerprinting in different spectral regions, but not yet in the ultraviolet (UV). Unlocking this spectral window would expand fingerprinting to the electronic energy structure of matter. This will access the prime triggers of photochemical reactions with unprecedented spectral resolution. In this research article, we discuss the milestones marking the way to the first UV dual comb spectrometer. We present experimental and simulated studies towards UV dual comb spectroscopy, directly applied to planned absorption measurements of formaldehyde (centered at 343 nm, 3.6 eV) and argon (80 nm, 16 eV). This will enable an unparalleled relative resolution of up to 10-9 - with a table-top UV source surpassing any synchrotron-linked spectrometer by at least two and any grating-based UV spectrometer by up to six orders of magnitude.

7.
Opt Express ; 29(14): 22117-22126, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34265983

ABSTRACT

In this work, the experimental realization of a tunable high photon flux extreme ultraviolet light source is presented. This is enabled by high harmonic generation of two temporally delayed driving pulses with a wavelength of 1030 nm, resulting in a tuning range of 0.8 eV at the 19th harmonic at 22.8 eV. The implemented approach allows for fast tuning of the spectrum, is highly flexible and is scalable towards full spectral coverage at higher photon energies.

8.
Opt Express ; 29(5): 6957-6966, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33726206

ABSTRACT

Differentially pumped capillaries, i.e., capillaries operated in a pressure gradient environment, are widely used for nonlinear pulse compression. In this work, we show that strong pressure gradients and high gas throughputs can cause spatiotemporal instabilities of the output beam profile. The instabilities occur with a sudden onset as the flow evolves from laminar to turbulent. Based on the experimental and numerical results, we derive guidelines to predict the onset of those instabilities and discuss possible applications in the context of nonlinear flow dynamics.

9.
Opt Express ; 28(5): 6188-6196, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32225873

ABSTRACT

High harmonic sources can provide ultrashort pulses of coherent radiation in the XUV and X-ray spectral region. In this paper we utilize a sub-two-cycle femtosecond fiber laser to efficiently generate a broadband continuum of high-order harmonics between 70 eV and 120 eV. The average power delivered by this source ranges from > 0.2 µW/eV at 80 eV to >0.03 µW/eV at 120 eV. At 92 eV (13.5 nm wavelength), we measured a coherent record-high average power of 0.1 µW/eV, which corresponds to 7 · 109 ph/s/eV, with a long-term stability of 0.8% rms deviation over a 20 min time period. The presented approach is average power scalable and promises up to 1011 ph/s/eV in the near future. With additional carrier-envelop phase control even isolated attosecond pulses can be expected from such sources. The combination of high flux, high photon energy and ultrashort (sub-) fs duration will enable photon-hungry time-resolved and multidimensional studies.

10.
Sci Rep ; 9(1): 1735, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30742029

ABSTRACT

Ptychography enables coherent diffractive imaging (CDI) of extended samples by raster scanning across the illuminating XUV/X-ray beam, thereby generalizing the unique advantages of CDI techniques. Table-top realizations of this method are urgently needed for many applications in sciences and industry. Previously, it was only possible to image features much larger than the illuminating wavelength with table-top ptychography although knife-edge tests suggested sub-wavelength resolution. However, most real-world imaging applications require resolving of the smallest and closely-spaced features of a sample in an extended field of view. In this work, resolving features as small as 2.5 λ (45 nm) using a table-top ptychography setup is demonstrated by employing a high-order harmonic XUV source with record-high photon flux. For the first time, a Rayleigh-type criterion is used as a direct and unambiguous resolution metric for high-resolution table-top setup. This reliably qualifies this imaging system for real-world applications e.g. in biological sciences, material sciences, imaging integrated circuits and semiconductor mask inspection.

11.
Appl Opt ; 57(21): 5941-5947, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30118017

ABSTRACT

Ultrashort laser pulses allow for in-volume processing of glass through non-linear absorption. This results in permanent material changes, largely independent of the processed glass, and it is of particular relevance for cleaving applications. In this paper, a laser with a wavelength of 1030 nm, pulse duration of 19 ps, repetition rate of 10 kHz, and burst regime consisting of either four or eight pulses, with an intra-burst pulse separation of 12.5 ns, is used. Subsequently, a Gaussian-Bessel focal line is generated in a fused silica substrate with the aid of an axicon configuration. We show how the structure of the modifications, including the length of material disruptions and affected zones, can be directly influenced by a reasonable choice of focus geometry, pulse energy, and burst regime. We achieve single-shot modifications with 2 µm in diameter and 7.6 mm in length, exceeding an aspect ratio of 1:3800. Furthermore, a maximum length of 10.8 mm could be achieved with a single shot.

12.
Opt Lett ; 42(19): 3761-3764, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28957121

ABSTRACT

We present a novel approach for temporal contrast enhancement of energetic laser pulses by filtered self-phase-modulation-broadened spectra. A measured temporal contrast enhancement by at least seven orders of magnitude in a simple setup has been achieved. This technique is applicable to a wide range of laser parameters and poses a highly efficient alternative to existing contrast-enhancement methods.

13.
Opt Lett ; 42(14): 2826-2829, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28708179

ABSTRACT

We present an ultrafast fiber laser system delivering 4.6 W average power at 258 nm based on two-stage fourth-harmonic generation in beta barium borate (BBO). The beam quality is close to being diffraction limited with an M2 value of 1.3×1.6. The pulse duration is 150 fs, which, potentially, is compressible down to 40 fs. A plain BBO and a sapphire-BBO compound are compared with respect to the achievable beam quality in the conversion process. This laser is applicable in scientific and industrial fields. Further scaling to higher average power is discussed.

14.
Opt Lett ; 41(18): 4332-5, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27628390

ABSTRACT

Few-cycle lasers are essential for many research areas such as attosecond physics that promise to address fundamental questions in science and technology. Therefore, further advancements are connected to significant progress in the underlying laser technology. Here, two-stage nonlinear compression of a 660 W femtosecond fiber laser system is utilized to achieve unprecedented average power levels of energetic ultrashort or even few-cycle laser pulses. In a first compression step, 408 W, 320 µJ, 30 fs pulses are achieved, which can be further compressed to 216 W, 170 µJ, 6.3 fs pulses in a second compression stage. To the best of our knowledge, this is the highest average power few-cycle laser system presented so far. It is expected to significantly advance the fields of high harmonic generation and attosecond science.

15.
Opt Express ; 24(16): 18133-47, 2016 Aug 08.
Article in English | MEDLINE | ID: mdl-27505779

ABSTRACT

Unraveling and controlling chemical dynamics requires techniques to image structural changes of molecules with femtosecond temporal and picometer spatial resolution. Ultrashort-pulse x-ray free-electron lasers have significantly advanced the field by enabling advanced pump-probe schemes. There is an increasing interest in using table-top photon sources enabled by high-harmonic generation of ultrashort-pulse lasers for such studies. We present a novel high-harmonic source driven by a 100 kHz fiber laser system, which delivers 1011 photons/s in a single 1.3 eV bandwidth harmonic at 68.6 eV. The combination of record-high photon flux and high repetition rate paves the way for time-resolved studies of the dissociation dynamics of inner-shell ionized molecules in a coincidence detection scheme. First coincidence measurements on CH3I are shown and it is outlined how the anticipated advancement of fiber laser technology and improved sample delivery will, in the next step, allow pump-probe studies of ultrafast molecular dynamics with table-top XUV-photon sources. These table-top sources can provide significantly higher repetition rates than the currently operating free-electron lasers and they offer very high temporal resolution due to the intrinsically small timing jitter between pump and probe pulses.

SELECTION OF CITATIONS
SEARCH DETAIL
...