Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 53: 367-377, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28153581

ABSTRACT

Tumor immune escape is today recognized as an important cancer hallmark and is therefore a major focus area in cancer therapy. Monocytes and dendritic cells (DCs), which are central to creating a robust anti-tumor immune response and establishing an anti-tumorigenic microenvironment, are directly targeted by the tumor escape mechanisms to develop immunosuppressive phenotypes. Providing activated monocytes and DCs to the tumor tissue is therefore an attractive way to break the tumor-derived immune suppression and reinstate cancer immune surveillance. To activate monocytes and DCs with high efficiency, we have investigated an immunotherapeutic Toll-like receptor (TLR) agonist delivery system comprising liposomes targeted to the dendritic cell immunoreceptor (DCIR). We formulated the immune stimulating TLR7 agonist TMX-202 in the liposomes and examined the targeting of the liposomes as well as their immune activating potential in blood-derived monocytes, myeloid DCs (mDCs), and plasmacytoid DCs (pDCs). Monocytes and mDCs were targeted with high specificity over lymphocytes, and exhibited potent TLR7-specific secretion of the anti-cancer cytokines IL-12p70, IFN-α 2a, and IFN-γ. This delivery system could be a way to improve cancer treatment either in the form of a vaccine with co-formulated antigen or as an immunotherapeutic vector to boost monocyte and DC activity in combination with other treatment protocols such as chemotherapy or radiotherapy. STATEMENT OF SIGNIFICANCE: Cancer immunotherapy is a powerful new tool in the oncologist's therapeutic arsenal, with our increased knowledge of anti-tumor immunity providing many new targets for intervention. Monocytes and dendritic cells (DCs) are attractive targets for enhancing the anti-tumor immune response, but systemic delivery of immunomodulators has proven to be associated with a high risk of fatal adverse events due to the systemic activation of the immune system. We address this important obstacle by targeting the delivery of an immunomodulator, a Toll-like receptor agonist, to DCs and monocytes in the bloodstream. We thus focus the activation, potentially avoiding the above-mentioned adverse effects, and demonstrate greatly increased ability of the agonist to induce secretion of anti-cancer cytokines.


Subject(s)
Adenine/analogs & derivatives , Antineoplastic Agents/immunology , Cytokines/biosynthesis , Dendritic Cells/immunology , Glycerophospholipids/administration & dosage , Liposomes/chemistry , Monocytes/immunology , Toll-Like Receptor 7/agonists , Adenine/administration & dosage , Adenine/immunology , Cells, Cultured , Cytokines/immunology , Dendritic Cells/drug effects , Dose-Response Relationship, Drug , Glycerophospholipids/immunology , Humans , Immunotherapy/methods , Monocytes/drug effects , Toll-Like Receptor 7/immunology , Tumor Escape/drug effects , Tumor Escape/immunology
2.
Acta Biomater ; 35: 248-59, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26884277

ABSTRACT

Future improvements of non-viral vectors for siRNA delivery require better understanding of intracellular processing and vector interactions with target cells. Here, we have compared the siRNA delivery properties of a lipid derivative of bPEI 1.8kDa (DOPE-PEI) with branched polyethyleneimine (bPEI) with average molecular weights of 1.8kDa (bPEI 1.8kDa) and 25kDa (bPEI 25kDa). We find mechanistic differences between the DOPE-PEI conjugate and bPEI regarding siRNA condensation and intracellular processing. bPEI 1.8kDa and bPEI 25kDa have similar properties with respect to condensation capability, but are very different regarding siRNA decondensation, cellular internalization and induction of reporter gene knockdown. Lipid conjugation of bPEI 1.8kDa improves the siRNA delivery properties, but with markedly different formulation requirements and mechanisms of action compared to conventional PEIs. Interestingly, strong knockdown using bPEI 25kDa is dependent on the presence of a free vector fraction which does not increase siRNA uptake. Finally, we have investigated the effect on lysosomal pH induced by these vectors to elucidate the differences in the proton sponge effect between lipid conjugated PEI and conventional PEI: Neither DOPE-PEI nor bPEI 25kDa affected lysosomal pH as a function of time, underlining that the possible proton sponge effect is not associated with changes in lysosomal pH. STATEMENT OF SIGNIFICANCE: Gene silencing therapy has the potential to treat diseases which are beyond the reach of current small molecule-based medicines. However, delivery of the small interfering RNAs (siRNAs) remains a bottleneck to clinical implementation, and the development of safe and efficient delivery systems would be one of the most important achievements in medicine today. A major reason for the lack of progress is insufficient understanding of cell-polyplex interaction. We investigate siRNA delivery using polyethyleneimine (PEI) based vectors and examine how crucial formulation parameters determine the challenges associated with PEI as a delivery vector. We further evaluate how lipid conjugation of PEI influences formulation, cytotoxicity and polymer interaction with cells and cargo as well as the proton sponge capabilities of the vectors.


Subject(s)
Gene Knockdown Techniques , Polyamines/metabolism , RNA, Small Interfering/metabolism , Cell Death/drug effects , Cell Line, Tumor , Endocytosis/drug effects , Genetic Vectors/metabolism , Heparin/pharmacology , Humans , Hydrogen-Ion Concentration , Luciferases/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Particle Size , Polyelectrolytes , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...