Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Article in English | MEDLINE | ID: mdl-38840831

ABSTRACT

Electronic nicotine delivery systems (ENDS) - which include electronic cigarettes or e-cigarettes, or simply e-cigs, and marijuana vaping have become increasingly popular. ENDS devices have been established as one of the tobacco quit methods and promoted to be safer compared to traditional tobacco cigarettes. Emerging evidence demonstrates that e-cigarette and marijuana vape use can be harmful, with potential associations with cancer. Herein, we summarize the level of evidence to date for altered immune response, with a focus on cancer risks in the offspring after maternal use of, or aerosol exposures from, ENDS or marijuana vape during pregnancy. From 27 published articles retrieved from PubMed, we sought to find out identified carcinogens in ENDS aerosols and marijuana vapor, which cross the placental barrier and can increase cancer risk in the offspring. Carcinogens in vaping aerosols include aldehydes, metals, tobacco-specific nitrosamines, tobacco alkaloids, polycyclic aromatic hydrocarbons, and volatile organic compounds. Additionally, there was only one passive vaping exposure case study on a human fetus, which noted that glycerol, aluminum, chromium, nickel, copper, zinc, selenium, and lead crossed from the mother to the offspring's cord blood. The carcinogens (metals) in that study were at lower concentrations compared to the mother's biological matrices. Lastly, we observed that in utero exposures to ENDS-associated chemicals can occur in vital organs such as the lungs, kidneys, brain, bladder, and heart. Any resulting DNA damage increases the risk of tumorigenesis. Future epidemiological studies are needed to examine the effects of passive aerosol exposures from existing and emerging electronic nicotine and marijuana products on developing offspring to cancer.

2.
Article in English | MEDLINE | ID: mdl-38494990

ABSTRACT

The mode of action (MOA) underlying perfluorooctanoic acid (PFOA)-induced liver tumors in rats is proposed to involve peroxisome proliferator-activated receptor α (PPARα) agonism. Despite clear PPARα activation evidence in rodent livers, the mechanisms driving cell growth remain elusive. Herein, we used dose-responsive apical endpoints and transcriptomic data to examine the proposed MOA. Male Sprague-Dawley rats were treated with 0, 1, 5, and 15 mg/kg PFOA for 7, 14, and 28 days via oral gavage. We showed PFOA induced hepatomegaly along with hepatocellular hypertrophy in rats. PPARα was activated in a dose-dependent manner. Toxicogenomic analysis revealed six early biomarkers (Cyp4a1, Nr1d1, Acot1, Acot2, Ehhadh, and Vnn1) in response to PPARα activation. A transient rise in hepatocellular DNA synthesis was demonstrated while Ki-67 labeling index showed no change. Transcriptomic analysis indicated no significant enrichment in pathways related to DNA synthesis, apoptosis, or the cell cycle. Key cyclins including Ccnd1, Ccnb1, Ccna2, and Ccne2 were dose-dependently suppressed by PFOA. Oxidative stress and the nuclear factor-κB signaling pathway were unaffected. Overall, evidence for PFOA-induced hepatocellular proliferation was transient within the studied timeframe. Our findings underscore the importance of considering inter-species differences and chemical-specific effects when evaluating the carcinogenic risk of PFOA in humans.

3.
Toxicol Ind Health ; 40(5): 272-291, 2024 May.
Article in English | MEDLINE | ID: mdl-38523547

ABSTRACT

Perchloroethylene (PCE) is used as a solvent and chemical intermediate. Following chronic inhalation exposure, PCE selectively induced liver tumors in mice. Understanding the mode of action (MOA) for PCE carcinogenesis in mice is important in defining its possible human cancer risk. The proposed MOA is based on the extensive examination of the peer-reviewed studies that have assessed the mouse liver effects of PCE and its major oxidative metabolite trichloroacetic acid (TCA). Similar to PCE, TCA has also been demonstrated to liver tumors selectively in mice following chronic exposure. The Key Events (KE) of the proposed PCE MOA involve oxidative metabolism of PCE to TCA [KE 1]; activation of the peroxisome proliferator-activated receptor alpha (PPARα) [KE 2]; alteration in hepatic gene expression including cell growth pathways [KE 3]; increase in cell proliferation [KE 4]; selective clonal expansion of hepatic preneoplastic foci [KE 5]; and formation of hepatic neoplasms [KE 6]. The scientific evidence supporting the PPARα MOA for PCE is strong and satisfies the requirements for a MOA analysis. The PPARα liver tumor MOA in rodents has been demonstrated not to occur in humans; thus, human liver cancer risk to PCE is not likely.


Subject(s)
Liver Neoplasms , Tetrachloroethylene , Mice , Humans , Animals , Tetrachloroethylene/toxicity , Tetrachloroethylene/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , PPAR alpha/pharmacology , Liver Neoplasms/chemically induced , Liver , Oxidation-Reduction , Risk Assessment
4.
Arch Toxicol ; 98(1): 327-334, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38059960

ABSTRACT

The kinetically-derived maximal dose (KMD) is defined as the maximal external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated. Toxicity produced at doses above the KMD can be qualitatively different from toxicity produced at lower doses. Here, we test the hypothesis that neoplastic lesions reported in the National Toxicology Program's (NTP) rodent cancer bioassay with ethylbenzene are a high-dose phenomenon secondary to saturation of elimination kinetics. To test this, we applied Bayesian modeling on kinetic data for ethylbenzene from rats and humans to estimate the Vmax and Km for the Michaelis-Menten equation that governs the elimination kinetics. Analysis of the Michaelis-Menten elimination curve generated from those Vmax and Km values indicated KMD ranges for venous ethylbenzene of 8-17 mg/L in rats and 10-18 mg/L in humans. Those venous concentrations are produced by inhalation concentrations of around 200 ppm ethylbenzene, which is well above typical human exposures. These KMD estimates support the hypothesis that neoplastic lesions seen in the NTP rodent bioassay occur secondary to saturation of ethylbenzene elimination pathways and are not relevant for human risk assessment. Thus, ethylbenzene does not pose a credible cancer risk to humans under foreseeable exposure conditions. Cancer risk assessments focused on protecting human health should avoid endpoint data from rodents exposed to ethylbenzene above the KMD range and future toxicological testing should focus on doses below the KMD range.


Subject(s)
Benzene Derivatives , Neoplasms , Humans , Rats , Animals , Bayes Theorem , Benzene Derivatives/toxicity , Neoplasms/chemically induced , Risk Assessment
5.
Environ Health Perspect ; 131(12): 127022, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38157272

ABSTRACT

BACKGROUND: Traditional dose-response assessment applies different low-dose extrapolation methods for cancer and noncancer effects and assumes that all carcinogens are mutagenic unless strong evidence suggests otherwise. Additionally, primarily focusing on one critical effect, dose-response modeling utilizes limited mode of action (MOA) data to inform low-dose risk. OBJECTIVE: We aimed to build a dose-response modeling framework that continuously extends the curve into the low-dose region via a quantitative integration of MOA information and to estimate MOA-based points of departure (PODs) for nonmutagenic carcinogens. METHODS: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) was used as an example to demonstrate the new dose-response modeling framework. There were three major steps included: a) identifying and extracting key quantifiable events (KQEs), b) calculating essential doses that sequentially activate KQEs using the benchmark dose (BMD) methodology, and c) characterizing pathway dose-response relationship for MOA-based POD estimation. RESULTS: We identified and extracted six KQEs and corresponding essential events composing the MOA of TCDD-induced liver tumors. With the essential doses estimated from the BMD method using various settings, three link functions were applied to model the pathway dose-response relationship. Given a toxicologically plausible definition of adversity, an MOA-based POD was derived from the pathway dose-response curve. The estimated MOA-based PODs were generally comparable with traditional PODs and can be further used to calculate reference doses (RfDs). CONCLUSIONS: The proposed framework quantitatively integrated mechanistic information in the modeling process and provided a promising strategy to harmonize cancer and noncancer dose-response assessment through pathway dose-response modeling. However, the framework can also be limited by data availability and the understanding of the underlying mechanism. https://doi.org/10.1289/EHP12677.


Subject(s)
Liver Neoplasms , Polychlorinated Dibenzodioxins , Humans , Carcinogens/toxicity , Polychlorinated Dibenzodioxins/toxicity , Risk Assessment/methods , Dose-Response Relationship, Drug
6.
Toxicol Sci ; 196(2): 250-260, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37643630

ABSTRACT

A main function of dose-response assessment is to estimate a "safe" dose in the target population to support chemical risk assessment. Typically, a "safe" dose is developed differently for cancer and noncancer effects based on a 2-step procedure, ie, point of departure (POD) derivation and low-dose extrapolation. However, the current dose-response assessment framework is criticized for its dichotomized strategy without integrating the mode of action (MOA) information. The objective of this study was, based on our previous work, to develop a MOA-based probabilistic dose-response framework that quantitatively synthesizes a biological pathway in a dose-response modeling process to estimate the risk of chemicals that have carcinogenic potential. 3,3',4,4',5-Pentachlorobiphenyl (PCB-126) was exemplified to demonstrate our proposed approach. There were 4 major steps in the new modeling framework, including (1) key quantifiable events (KQEs) identification and extraction, (2) essential dose calculation, (3) MOA-based POD derivation, and (4) MOA-based probabilistic reference dose (RfD) estimation. Compared with reported PODs and traditional RfDs, the MOA-based estimates derived from our approach were comparable and plausible. One key feature of our approach was the use of overall MOA information to build the dose-response relationship on the entire dose continuum including the low-dose region. On the other hand, by adjusting uncertainty and variability in a probabilistic manner, the MOA-based probabilistic RfDs can provide useful insights of health protection for the specific proportion of population. Moreover, the proposed framework had important potential to be generalized to assess different types of chemicals other than nonmutagenic carcinogens, highlighting its utility to improve current chemical risk assessment.


Subject(s)
Neoplasms , Humans , Dose-Response Relationship, Drug , Carcinogens/toxicity , Carcinogenesis , Risk Assessment/methods , Liver
7.
Am J Alzheimers Dis Other Demen ; 38: 15333175231175797, 2023.
Article in English | MEDLINE | ID: mdl-37340856

ABSTRACT

INTRODUCTION: We examined the associations of baseline telomere length (TL) and TL change with cognitive function over time in older US adults, as well as differences by sex and race. METHODS: A total of 1820 cognitively healthy individuals (median baseline age: 63 years) were included. Telomere length was measured using qPCR-based method at baseline and among 614 participants in the follow-up examination 10 years later. Cognitive function was assessed by a four-test battery every 2 years. RESULTS: In multivariable-adjusted linear mixed models, longer baseline TL and smaller attrition/lengthening of TL over time were associated with better Animal Fluency Test score. Longer baseline TL was also linearly associated with better Letter Fluency Test score. The observed associations were consistently more pronounced in women than men and in Black compared to White participants. DISCUSSION: Telomere length may be a biomarker that predicts long-term verbal fluency and executive function, particularly in women and Black Americans.


Subject(s)
Cognition , Cognitive Dysfunction , Female , Humans , Biomarkers , Executive Function , Cognitive Dysfunction/genetics , Telomere/genetics
8.
J Toxicol Environ Health B Crit Rev ; 26(6): 342-370, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37282619

ABSTRACT

Carbon tetrachloride (CCl4) has been extensively used and reported to produce toxicity, most notably involving the liver. Carbon tetrachloride metabolism involves CYP450-mediated bioactivation to trichloromethyl and trichloromethyl peroxy radicals, which are capable of macromolecular interaction with cell components including lipids and proteins. Radical interaction with lipids produces lipid peroxidation which can mediate cellular damage leading to cell death. Chronic exposure with CCl4 a rodent hepatic carcinogen with a mode of action (MOA) exhibits the following key events: 1) metabolic activation; 2) hepatocellular toxicity and cell death; 3) consequent regenerative increased cell proliferation; and 4) hepatocellular proliferative lesions (foci, adenomas, carcinomas). The induction of rodent hepatic tumors is dependent upon the dose (concentration and exposure duration) of CCl4, with tumors only occurring at cytotoxic exposure levels. Adrenal benign pheochromocytomas were also increased in mice at high CCl4 exposures; however, these tumors are not of relevant importance to human cancer risk. Few epidemiology studies that have been performed on CCl4, do not provide credible evidence of enhanced risk of occurrence of liver or adrenal cancers, but these studies have serious flaws limiting their usefulness for risk assessment. This manuscript summarizes the toxicity and carcinogenicity attributed to CCl4, specifically addressing MOA, dose-response, and human relevance.


Subject(s)
Adrenal Gland Neoplasms , Liver Neoplasms , Pheochromocytoma , Mice , Humans , Animals , Carbon Tetrachloride/toxicity , Carbon Tetrachloride/metabolism , Liver Neoplasms/chemically induced , Lipids
9.
Arch Toxicol ; 97(6): 1813-1822, 2023 06.
Article in English | MEDLINE | ID: mdl-37029818

ABSTRACT

The 1958 Delaney amendment to the Federal Food Drug and Cosmetics Act prohibited food additives causing cancer in animals by appropriate tests. Regulators responded by adopting chronic lifetime cancer tests in rodents, soon challenged as inappropriate, for they led to very inconsistent results depending on the subjective choice of animals, test design and conduct, and interpretive assumptions. Presently, decades of discussions and trials have come to conclude it is impossible to translate chronic animal data into verifiable prospects of cancer hazards and risks in humans. Such conclusion poses an existential crisis for official agencies in the US and abroad, which for some 65 years have used animal tests to justify massive regulations of alleged human cancer hazards, with aggregated costs of $trillions and without provable evidence of public health advantages. This article addresses suitable remedies for the US and potentially worldwide, by critically exploring the practices of regulatory agencies vis-á-vis essential criteria for validating scientific evidence. According to this analysis, regulations of alleged cancer hazards and risks have been and continue to be structured around arbitrary default assumptions at odds with basic scientific and legal tests of reliable evidence. Such practices raise a manifold ethical predicament for being incompatible with basic premises of the US Constitution, and with the ensuing public expectations of testable truth and transparency from government agencies. Potential remedies in the US include amendments to the US Administrative Procedures Act, preferably requiring agencies to justify regulations compliant with the Daubert opinion of the Daubert ruling of the US Supreme Court, which codifies the criteria defining reliable scientific evidence. International reverberations are bound to follow what remedial actions may be taken in the US, the origin of current world regulatory procedures to control alleged cancer causing agents.


Subject(s)
Neoplasms , Public Health , Animals , Humans , United States , Carcinogens/toxicity , Neoplasms/chemically induced , Neoplasms/prevention & control
10.
Hepatol Commun ; 7(4)2023 04 01.
Article in English | MEDLINE | ID: mdl-37026704

ABSTRACT

BACKGROUND: Alcohol-associated liver disease (ALD) is a syndrome of progressive inflammatory liver injury and vascular remodeling associated with long-term heavy intake of ethanol. Elevated miR-34a expression, macrophage activation, and liver angiogenesis in ALD and their correlation with the degree of inflammation and fibrosis have been reported. The current study aims to characterize the functional role of miR-34a-regulated macrophage- associated angiogenesis during ALD. METHODS RESULTS: We identified that knockout of miR-34a in 5 weeks of ethanol-fed mice significantly decreased the total liver histopathology score and miR-34a expression, along with the inhibited liver inflammation and angiogenesis by reduced macrophage infiltration and CD31/VEGF-A expression. Treatment of murine macrophages (RAW 264.7) with lipopolysaccharide (20 ng/mL) for 24 h significantly increased miR-34a expression, along with the enhanced M1/M2 phenotype changes and reduced Sirt1 expression. Silencing of miR-34a significantly increased oxygen consumption rate (OCR) in ethanol treated macrophages, and decreased lipopolysaccharide-induced activation of M1 phenotypes in cultured macrophages by upregulation of Sirt1. Furthermore, the expressions of miR-34a and its target Sirt1, macrophage polarization, and angiogenic phenotypes were significantly altered in isolated macrophages from ethanol-fed mouse liver specimens compared to controls. TLR4/miR-34a knockout mice and miR-34a Morpho/AS treated mice displayed less sensitivity to alcohol-associated injury, along with the enhanced Sirt1 and M2 markers in isolated macrophages, as well as reduced angiogenesis and hepatic expressions of inflammation markers MPO, LY6G, CXCL1, and CXCL2. CONCLUSION: Our results show that miR-34a-mediated Sirt1 signaling in macrophages is essential for steatohepatitis and angiogenesis during alcohol-induced liver injury. These findings provide new insight into the function of microRNA-regulated liver inflammation and angiogenesis and the implications for reversing steatohepatitis with potential therapeutic benefits in human alcohol-associated liver diseases.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Fatty Liver , Liver Diseases, Alcoholic , MicroRNAs , Animals , Humans , Mice , Ethanol/toxicity , Fatty Liver/pathology , Inflammation/genetics , Lipopolysaccharides/toxicity , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/pathology , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , RAW 264.7 Cells
11.
Toxicol Sci ; 192(1): 15-29, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36629480

ABSTRACT

HFPO-DA (ammonium, 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate) is a short-chain polyfluorinated alkyl substance (PFAS) used in the manufacture of some types of fluorinated polymers. Like many PFAS, toxicity studies with HFPO-DA indicate the liver is the primary target of toxicity in rodents following oral exposure. Due to the structural diversity of PFAS, the mode of action (MOA) can differ between PFAS for the same target tissue. There is significant evidence for involvement of peroxisome proliferator-activated receptor alpha (PPARα) activation based on molecular and histopathological responses in the liver following HFPO-DA exposure, but other MOAs have also been hypothesized based on limited evidence. The MOA underlying the liver effects in mice exposed to HFPO-DA was assessed in the context of the Key Events (KEs) outlined in the MOA framework for PPARα activator-induced rodent hepatocarcinogenesis. The first 3 KEs (ie, PPARα activation, alteration of cell growth pathways, and perturbation of cell growth/survival) are supported by several lines of evidence from both in vitro and in vivo data available for HFPO-DA. In contrast, alternate MOAs, including cytotoxicity, PPARγ and mitochondrial dysfunction are generally not supported by the scientific literature. HFPO-DA-mediated liver effects in mice are not expected in humans as only KE 1, PPARα activation, is shared across species. PPARα-mediated gene expression in humans produces only a subset (ie, lipid modulating effects) of the responses observed in rodents. As such, the adverse effects observed in rodent livers should not be used as the basis of toxicity values for HFPO-DA for purposes of human health risk assessment.


Subject(s)
Fluorocarbons , Liver Neoplasms , Humans , Mice , Animals , PPAR alpha/genetics , PPAR alpha/metabolism , Fluorocarbons/toxicity , Liver , Liver Neoplasms/metabolism , Rodentia/metabolism
12.
J Cell Mol Med ; 27(7): 891-905, 2023 04.
Article in English | MEDLINE | ID: mdl-36716094

ABSTRACT

Gulf War Illness (GWI) has been reported in 25%-35% of veterans returned from the Gulf war. Symptoms of GWI are varied and include both neurological and gastrointestinal symptoms as well as chronic fatigue. Development of GWI has been associated with chemical exposure particularly with exposure to pyridostigmine bromide (PB) and permethrin. Recent studies have found that the pathology of GWI is connected to changes in the gut microbiota, that is the gut dysbiosis. In studies using animal models, the exposure to PB and permethrin resulted in similar changes in the gut microbiome as these found in GW veterans with GWI. Studies using animal models have also shown that phytochemicals like curcumin are beneficial in reducing the symptoms and that the extracellular vesicles (EV) released from gut bacteria and from the intestinal epithelium can both promote diseases and suppress diseases through the intercellular communication mechanisms. The intestinal epithelium cells produce EVs and these EVs of intestinal epithelium origin are found to suppress inflammatory bowel disease severity, suggesting the benefits of utilizing EV in treatments. On the contrary, EV from the plasma of septic mice enhanced the level of proinflammatory cytokines in vitro and neutrophils and macrophages in vivo, suggesting differences in the EV depending on the types of cells they were originated and/or influences of environmental changes. These studies suggest that targeting the EV that specifically have positive influences may become a new therapeutic strategy in the treatment of veterans with GWI.


Subject(s)
Gastrointestinal Microbiome , Persian Gulf Syndrome , Mice , Animals , Permethrin , Dysbiosis , Gulf War , Persian Gulf Syndrome/microbiology , Pyridostigmine Bromide , Disease Models, Animal
13.
FASEB J ; 37(2): e22731, 2023 02.
Article in English | MEDLINE | ID: mdl-36583714

ABSTRACT

Primary sclerosing cholangitis (PSC) is a chronic liver disease characterized by inflammatory responses and fibrotic scar formation leading to cholestasis. Ductular reaction and liver fibrosis are typical liver changes seen in human PSC and cholestasis patients. The current study aimed to clarify the role of liver-specific microRNA-34a in the cholestasis-associated ductular reaction and liver fibrosis. We demonstrated that miR-34a expression was significantly increased in human PSC livers along with the enhanced ductular reaction, cellular senescence, and liver fibrosis. A liver-specific miR-34a knockout mouse was established by crossing floxed miR-34a mice with albumin-promoter-driven Cre mice. Bile duct ligation (BDL) induced liver injury characterized by necrosis, fibrosis, and immune cell infiltration. In contrast, liver-specific miR-34a knockout in BDL mice resulted in decreased biliary ductular pathology associated with the reduced cholangiocyte senescence and fibrotic responses. The miR-34a-mediated ductular reactions may be functioning through Sirt-1-mediated senescence and fibrosis. The hepatocyte-derived conditioned medium promoted LPS-induced fibrotic responses and senescence in cholangiocytes, and miR-34a inhibitor suppressed these effects, further supporting the involvement of paracrine regulation. In conclusion, we demonstrated that liver-specific miR-34a plays an important role in ductular reaction and fibrotic responses in a BDL mouse model of cholestatic liver disease.


Subject(s)
Cholestasis , Liver Diseases , MicroRNAs , Humans , Mice , Animals , Liver/metabolism , Liver Cirrhosis/metabolism , Cholestasis/genetics , Cholestasis/pathology , Bile Ducts/surgery , Bile Ducts/metabolism , Bile Ducts/pathology , Fibrosis , Liver Diseases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
14.
Toxicol Sci ; 188(1): 4-16, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35404422

ABSTRACT

There is growing recognition across broad sectors of the scientific community that use of genomic biomarkers has the potential to reduce the need for conventional rodent carcinogenicity studies of industrial chemicals, agrochemicals, and pharmaceuticals through a weight-of-evidence approach. These biomarkers fall into 2 major categories: (1) sets of gene transcripts that can identify distinct tumorigenic mechanisms of action; and (2) cancer driver gene mutations indicative of rapidly expanding growth-advantaged clonal cell populations. This call-to-action article describes a collaborative approach launched to develop and qualify biomarker gene expression panels that measure widely accepted molecular pathways linked to tumorigenesis and their activation levels to predict tumorigenic doses of chemicals from short-term exposures. Growing evidence suggests that application of such biomarker panels in short-term exposure rodent studies can identify both tumorigenic hazard and tumorigenic activation levels for chemical-induced carcinogenicity. In the future, this approach will be expanded to include methodologies examining mutations in key cancer driver gene mutation hotspots as biomarkers of both genotoxic and nongenotoxic chemical tumor risk. Analytical, technical, and biological validation studies of these complementary genomic tools are being undertaken by multisector and multidisciplinary collaborative teams within the Health and Environmental Sciences Institute. Success from these efforts will facilitate the transition from current heavy reliance on conventional 2-year rodent carcinogenicity studies to more rapid animal- and resource-sparing approaches for mechanism-based carcinogenicity evaluation supporting internal and regulatory decision-making.


Subject(s)
Neoplasms , Rodentia , Animals , Biomarkers, Tumor/genetics , Carcinogenesis , Carcinogenicity Tests , Carcinogens/toxicity , Genomics , Neoplasms/chemically induced , Neoplasms/genetics
15.
FASEB J ; 36(1): e22125, 2022 01.
Article in English | MEDLINE | ID: mdl-34958687

ABSTRACT

Aging is associated with gradual changes in liver structure and physiological/pathological functions in hepatic cells including hepatocytes, cholangiocytes, Kupffer cells, hepatic stellate cells (HSCs), and liver sinusoidal endothelial cells (LSECs). LSECs are specialized hepatic endothelial cells that regulate liver homeostasis. These cells actively impact the hepatic microenvironment as they have fenestrations and a thin morphology to allow substance exchange between circulating blood and the liver tissue. As aging occurs, LSECs have a reduction in both the number and size of fenestrations, which is referred to as pseudocapillarization. This along with the aging of the liver leads to increased oxidative stress, decreased availability of nitric oxide, decreased hepatic blood flow, and increased inflammatory cytokines in LSECs. Vascular aging can also lead to hepatic hypoxia, HSC activation, and liver fibrosis. In this review, we described the basic structure of LSECs, and the effect of LSECs on hepatic inflammation and fibrosis during aging process. We briefly summarized the changes of hepatic microcirculation during liver inflammation, the effect of aging on the clearance function of LSECs, the interactions between LSECs and immunity, hepatocytes or other hepatic nonparenchymal cells, and the therapeutic intervention of liver diseases by targeting LSECs and vascular system. Since LSECs play an important role in the development of liver fibrosis and the changes of LSEC phenotype occur in the early stage of liver fibrosis, the study of LSECs in the fibrotic liver is valuable for the detection of early liver fibrosis and the early intervention of fibrotic response.


Subject(s)
Aging , Endothelium, Vascular/metabolism , Hypoxia , Liver Cirrhosis , Liver , Aging/metabolism , Aging/pathology , Animals , Chronic Disease , Humans , Hypoxia/metabolism , Hypoxia/pathology , Liver/blood supply , Liver/metabolism , Liver/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology
16.
Environ Int ; 158: 106943, 2022 01.
Article in English | MEDLINE | ID: mdl-34717176

ABSTRACT

2,4,6-Tribromophenol (2,4,6-TBP) is a brominated flame retardant that accumulates in human tissues and is a potential toxicant. Previous studies found 2,4,6-TBP levels in human tissues were significantly higher than those of brominated flame retardants measured in the same samples. In contrast, the levels of 2,4,6-TBP in the environment and foodstuff are not elevated, suggesting a low potential for direct intake through environmental exposure or diet. Here, we hypothesized that high levels of 2,4,6-TBP in human tissues are partially from the indirect exposure sources, such as biotransformation of highly brominated substances. We conducted in vitro assays utilizing human and rat liver microsomes to compare the biotransformation rates of four highly brominated flame retardants, which could potentially transform to 2,4,6-TBP, including decabromodiphenyl ethane (DBDPE), 2,4,6-tris-(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), and tetrabromobisphenol A (TBBPA). Our results show that TTBP-TAZ rapidly metabolizes in both human and rat liver microsomes with a half-life of 1.1 and 2.2 h, respectively, suggesting that TTBP-TAZ is a potential precursor of 2,4,6-TBP. In contrast, 2,4,6-TBP was not formed as a result of biotransformation of TBBPA, BTBPE, and DBDPE in both human and rat liver microsomes. We applied suspect and target screening to explore the metabolic pathways of TTBP-TAZ and identified 2,4,6-TBP as a major metabolite of TTBP-TAZ accounting for 87% of all formed metabolites. These in vitro results were further tested by an in vivo experiment in which 2,4,6-TBP was detected in the rat blood and liver at concentrations of 270 ± 110 and 50 ± 14 µg/g lipid weight, respectively, after being exposed to 250 mg/kg body weight/day of TTBP-TAZ for a week. The hepatic mRNA expression demonstrated that TTBP-TAZ significantly activates the aryl hydrocarbon receptor (AhR) and promotes fatty degeneration (18 and 28-fold change compared to control, respectively) in rats.


Subject(s)
Flame Retardants , Animals , Biotransformation , Environmental Monitoring , Flame Retardants/analysis , Flame Retardants/toxicity , Halogenated Diphenyl Ethers/toxicity , Humans , Hydrocarbons, Brominated , Phenols , Rats , Triazines/analysis , Triazines/toxicity
17.
Physiol Rep ; 9(15): e14926, 2021 08.
Article in English | MEDLINE | ID: mdl-34342164

ABSTRACT

Chronic endurance exercise is a therapeutic strategy in the treatment of non-alcoholic fatty liver disease (NAFLD). Metabolic, cardiorespiratory, and endocrine pathways targeted by chronic endurance exercise have been identified; however, the specific cellular and molecular pathways modified by exercise in the steatotic liver remain unresolved. In this study, we show hepatic gene expression, and the structure, characteristics, and clinical differences between sedentary and exercised mice, by an endurance exercise model with wheels with a controlled velocity that allows for the quantification of a human-relevant endurance "dosage," after exposure to regular and high-fat diet. Chronic exercise modified the transcription of hepatic genes related to liver nuclear receptors, cell growth, fibrosis, inflammation, and oxidative stress, and decreased the amount of lipid accumulation in the liver. Moreover, the combination of endurance training with the change in diet differentially modified the genetic expression of the biomarkers relative to the separate interventions. Even though exercise by itself showed counteract NAFLD development, the combined intervention was sufficient to convert the structure and clinical aspects of the liver from steatotic to healthy. Given our findings, the combination of endurance exercise and change in diet should be considered a therapeutic option for NASH.


Subject(s)
Diet, High-Fat/adverse effects , Disease Models, Animal , Endurance Training , Liver Cirrhosis/therapy , Non-alcoholic Fatty Liver Disease/therapy , Oxidative Stress , Physical Conditioning, Animal , Animals , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Receptors, Cytoplasmic and Nuclear/metabolism
18.
Appl Physiol Nutr Metab ; 46(4): 356-367, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33052711

ABSTRACT

Chronic endurance exercise is a therapeutic strategy in the treatment of many chronic diseases in humans, including the prevention and treatment of metabolic diseases such as diabetes mellitus. Metabolic, cardiorespiratory, and endocrine pathways targeted by chronic endurance exercise have been identified. In the liver, however, the cellular and molecular pathways that are modified by exercise and have preventive or therapeutic relevance to metabolic disease need to be elucidated. The mouse model used in the current study allows for the quantification of a human-relevant exercise "dosage". In this study we show hepatic gene expression differences between sedentary female and sedentary male mice and that chronic exercise modifies the transcription of hepatic genes related to metabolic disease and steatosis in both male and female mice. Chronic exercise induces molecular pathways involved in glucose tolerance, glycolysis, and gluconeogenesis while producing a decrease in pathways related to insulin resistance, steatosis, fibrosis, and inflammation. Given these findings, this mouse exercise model has potential to dissect the cellular and molecular hepatic changes following chronic exercise with application to understanding the role that chronic exercise plays in preventing human diseases. Novelty: Exercise modifies the hepatic gene expression and hepatic pathways related to metabolic disease in male and female mice. Sex differences were seen in hepatic gene expression between sedentary and exercised mice. The mouse exercise model used in this study allows for application and evaluation of exercise effects in human disease.


Subject(s)
Gene Expression , Liver/metabolism , Physical Conditioning, Animal , Physical Endurance , Animals , Female , Male , Mice , Mice, Inbred C57BL , Sex Factors
19.
PLoS One ; 15(12): e0243451, 2020.
Article in English | MEDLINE | ID: mdl-33347443

ABSTRACT

Drug induced liver injury (DILI) and cell death can result from oxidative stress in hepatocytes. An initial pattern of centrilobular damage in the APAP model of DILI is amplified by communication from stressed cells and immune system activation. While hepatocyte proliferation counters cell loss, high doses are still lethal to the tissue. To understand the progression of disease from the initial damage to tissue recovery or death, we computationally model the competing biological processes of hepatocyte proliferation, necrosis and injury propagation. We parametrize timescales of proliferation (α), conversion of healthy to stressed cells (ß) and further sensitization of stressed cells towards necrotic pathways (γ) and model them on a Cellular Automaton (CA) based grid of lattice sites. 1D simulations show that a small α/ß (fast proliferation), combined with a large γ/ß (slow death) have the lowest probabilities of tissue survival. At large α/ß, tissue fate can be described by a critical γ/ß* ratio alone; this value is dependent on the initial amount of damage and proportional to the tissue size N. Additionally, the 1D model predicts a minimum healthy population size below which damage is irreversible. Finally, we compare 1D and 2D phase spaces and discuss outcomes of bistability where either survival or death is possible, and of coexistence where simulated tissue never completely recovers or dies but persists as a mixture of healthy, stressed and necrotic cells. In conclusion, our model sheds light on the evolution of tissue damage or recovery and predicts potential for divergent fates given different rates of proliferation, necrosis, and injury propagation.


Subject(s)
Chemical and Drug Induced Liver Injury/pathology , Liver/pathology , Models, Animal , Acetaminophen/toxicity , Alanine Transaminase/metabolism , Animals , Apoptosis , Aspartate Aminotransferases/metabolism , Cell Proliferation , Hepatocytes/cytology , Hepatocytes/metabolism , Liver/enzymology , Liver/metabolism , Mice , Necrosis
20.
Arch Toxicol ; 94(8): 2873-2884, 2020 08.
Article in English | MEDLINE | ID: mdl-32435917

ABSTRACT

Dieldrin has been shown to induce liver tumors selectively in mice. Although the exact mechanism is not fully understood, previous studies from our laboratory and others have shown that dieldrin induced liver tumors in mice through a non-genotoxic mechanism acting on tumor promotion stage. Two studies were performed to examine the role of nuclear receptor activation as a possible mode of action (MOA) for dieldrin-induced mouse liver tumors. In the initial study, male C57BL/6 mice (6- to 8-week old) were treated with dieldrin in diet (10 ppm) for 7, 14, and 28 days. Phenobarbital (PB), beta-naphthoflavone (BNF) and Di (2-ethylhexyl) phthalate (DEHP) were included as positive controls in this study for evaluating the involvement of CAR (constitutive androstane receptor), AhR (aryl hydrocarbon receptor) or PPARα (peroxisome proliferator activated receptor alpha) in the MOA of dieldrin hepatocarcinogenesis. A significant increase in hepatocyte DNA synthesis (BrdU incorporation) was seen in treated mice compared with the untreated controls. Analysis of the expression of the nuclear receptor responsive genes revealed that dieldrin induced a significant increase in the expression of genes specific to CAR activation (Cyp2b10, up to 400- to 2700-fold) and PXR activation (Cyp3a11, up to 5- to 11-fold) over untreated controls. The AhR target genes Cyp1a1 and Cyp1a2 were also slightly induced (2.0- to 3.7-fold and 1.7- to 2.8-fold, respectively). PPARα activation was not seen in the liver following dieldrin treatment. In addition, consistent with previous studies in our lab, treatment with dieldrin produced significant elevation in the hepatic oxidative stress. In a subsequent study using CAR, PXR, and CAR/PXR knockout mice, we confirmed that the dieldrin-induced liver effects in mouse were only mediated by the activation of CAR receptor. Based on these findings, we propose that dieldrin induced liver tumors in mice through a nuclear receptor CAR-mediated mode of action. The previously observed oxidative stress/damage may be an associated or modifying factor in the process of dieldrin-induced liver tumor formation subsequent to the CAR activation.


Subject(s)
Cell Transformation, Neoplastic/chemically induced , Dieldrin/toxicity , Insecticides/toxicity , Liver Neoplasms/chemically induced , Liver/drug effects , Receptors, Cytoplasmic and Nuclear/agonists , Animals , Aryl Hydrocarbon Hydroxylases/biosynthesis , Aryl Hydrocarbon Hydroxylases/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Constitutive Androstane Receptor , Cytochrome P450 Family 2/biosynthesis , Cytochrome P450 Family 2/genetics , DNA Replication/drug effects , Enzyme Induction , Liver/metabolism , Liver/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress/drug effects , PPAR alpha/genetics , PPAR alpha/metabolism , Pregnane X Receptor/genetics , Pregnane X Receptor/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction , Steroid Hydroxylases/biosynthesis , Steroid Hydroxylases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...