Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 145(2): 805, 2019 02.
Article in English | MEDLINE | ID: mdl-30823822

ABSTRACT

Recent work showing that a period of perceptual training can modulate the magnitude of speech-motor learning in a perturbed auditory feedback task could inform clinical interventions or second-language training strategies. The present study investigated the influence of perceptual training on a clinically and pedagogically relevant task of vocally matching a visually presented speech target using visual-acoustic biofeedback. Forty female adults aged 18-35 yr received perceptual training targeting the English /æ-ɛ/ contrast, randomly assigned to a condition that shifted the perceptual boundary toward either /æ/ or /ɛ/. Participants were then asked to produce the word head while modifying their output to match a visually presented acoustic target corresponding with a slightly higher first formant (F1, closer to /æ/). By analogy to findings from previous research, it was predicted that individuals whose boundary was shifted toward /æ/ would also show a greater magnitude of change in the visual biofeedback task. After perceptual training, the groups showed the predicted difference in perceptual boundary location, but they did not differ in their performance on the biofeedback matching task. It is proposed that the explicit versus implicit nature of the tasks used might account for the difference between this study and previous findings.


Subject(s)
Auditory Perception/physiology , Feedback, Sensory/physiology , Motor Skills/physiology , Speech/physiology , Acoustic Stimulation , Adolescent , Adult , Female , Humans , Young Adult
2.
Nature ; 505(7482): 204-7, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24291793

ABSTRACT

Three-quarters of the oceanic crust formed at fast-spreading ridges is composed of plutonic rocks whose mineral assemblages, textures and compositions record the history of melt transport and crystallization between the mantle and the sea floor. Despite the importance of these rocks, sampling them in situ is extremely challenging owing to the overlying dykes and lavas. This means that models for understanding the formation of the lower crust are based largely on geophysical studies and ancient analogues (ophiolites) that did not form at typical mid-ocean ridges. Here we describe cored intervals of primitive, modally layered gabbroic rocks from the lower plutonic crust formed at a fast-spreading ridge, sampled by the Integrated Ocean Drilling Program at the Hess Deep rift. Centimetre-scale, modally layered rocks, some of which have a strong layering-parallel foliation, confirm a long-held belief that such rocks are a key constituent of the lower oceanic crust formed at fast-spreading ridges. Geochemical analysis of these primitive lower plutonic rocks--in combination with previous geochemical data for shallow-level plutonic rocks, sheeted dykes and lavas--provides the most completely constrained estimate of the bulk composition of fast-spreading oceanic crust so far. Simple crystallization models using this bulk crustal composition as the parental melt accurately predict the bulk composition of both the lavas and the plutonic rocks. However, the recovered plutonic rocks show early crystallization of orthopyroxene, which is not predicted by current models of melt extraction from the mantle and mid-ocean-ridge basalt differentiation. The simplest explanation of this observation is that compositionally diverse melts are extracted from the mantle and partly crystallize before mixing to produce the more homogeneous magmas that erupt.

3.
Science ; 340(6130): 341-4, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23599491

ABSTRACT

The circum-Antarctic Southern Ocean is an important region for global marine food webs and carbon cycling because of sea-ice formation and its unique plankton ecosystem. However, the mechanisms underlying the installation of this distinct ecosystem and the geological timing of its development remain unknown. Here, we show, on the basis of fossil marine dinoflagellate cyst records, that a major restructuring of the Southern Ocean plankton ecosystem occurred abruptly and concomitant with the first major Antarctic glaciation in the earliest Oligocene (~33.6 million years ago). This turnover marks a regime shift in zooplankton-phytoplankton interactions and community structure, which indicates the appearance of eutrophic and seasonally productive environments on the Antarctic margin. We conclude that earliest Oligocene cooling, ice-sheet expansion, and subsequent sea-ice formation were important drivers of biotic evolution in the Southern Ocean.


Subject(s)
Adaptation, Physiological , Dinoflagellida/physiology , Ecosystem , Ice Cover , Oceans and Seas , Phytoplankton/physiology , Zooplankton/physiology , Animals , Antarctic Regions , Cold Temperature , Fossils
4.
Nature ; 488(7413): 609-14, 2012 Aug 30.
Article in English | MEDLINE | ID: mdl-22932385

ABSTRACT

Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0-3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.


Subject(s)
Altitude , Calcium Carbonate/analysis , Carbon Cycle , Seawater/chemistry , Atmosphere/chemistry , Carbon Dioxide/analysis , Diatoms/metabolism , Foraminifera/metabolism , Geologic Sediments/chemistry , Global Warming/history , Global Warming/statistics & numerical data , History, 21st Century , History, Ancient , Marine Biology , Oxygen/metabolism , Pacific Ocean , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...