Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020182

ABSTRACT

Groundwater is the most ubiquitous source of liquid freshwater globally, yet its role in supporting diverse ecosystems is rarely acknowledged1,2. However, the location and extent of groundwater-dependent ecosystems (GDEs) are unknown in many geographies, and protection measures are lacking1,3. Here, we map GDEs at high-resolution (roughly 30 m) and find them present on more than one-third of global drylands analysed, including important global biodiversity hotspots4. GDEs are more extensive and contiguous in landscapes dominated by pastoralism with lower rates of groundwater depletion, suggesting that many GDEs are likely to have already been lost due to water and land use practices. Nevertheless, 53% of GDEs exist within regions showing declining groundwater trends, which highlights the urgent need to protect GDEs from the threat of groundwater depletion. However, we found that only 21% of GDEs exist on protected lands or in jurisdictions with sustainable groundwater management policies, invoking a call to action to protect these vital ecosystems. Furthermore, we examine the linkage of GDEs with cultural and socio-economic factors in the Greater Sahel region, where GDEs play an essential role in supporting biodiversity and rural livelihoods, to explore other means for protection of GDEs in politically unstable regions. Our GDE map provides critical information for prioritizing and developing policies and protection mechanisms across various local, regional or international scales to safeguard these important ecosystems and the societies dependent on them.

2.
PLoS One ; 10(7): e0130710, 2015.
Article in English | MEDLINE | ID: mdl-26147215

ABSTRACT

The ranges and abundances of species that depend on freshwater habitats are declining worldwide. Efforts to counteract those trends are often hampered by a lack of information about species distribution and conservation status and are often strongly biased toward a few well-studied groups. We identified the 3,906 vascular plants, macroinvertebrates, and vertebrates native to California, USA, that depend on fresh water for at least one stage of their life history. We evaluated the conservation status for these taxa using existing government and non-governmental organization assessments (e.g., endangered species act, NatureServe), created a spatial database of locality observations or distribution information from ~400 data sources, and mapped patterns of richness, endemism, and vulnerability. Although nearly half of all taxa with conservation status (n = 1,939) are vulnerable to extinction, only 114 (6%) of those vulnerable taxa have a legal mandate for protection in the form of formal inclusion on a state or federal endangered species list. Endemic taxa are at greater risk than non-endemics, with 90% of the 927 endemic taxa vulnerable to extinction. Records with spatial data were available for a total of 2,276 species (61%). The patterns of species richness differ depending on the taxonomic group analyzed, but are similar across taxonomic level. No particular taxonomic group represents an umbrella for all species, but hotspots of high richness for listed species cover 40% of the hotspots for all other species and 58% of the hotspots for vulnerable freshwater species. By mapping freshwater species hotspots we show locations that represent the top priority for conservation action in the state. This study identifies opportunities to fill gaps in the evaluation of conservation status for freshwater taxa in California, to address the lack of occurrence information for nearly 40% of freshwater taxa and nearly 40% of watersheds in the state, and to implement adequate protections for freshwater taxa where they are currently lacking.


Subject(s)
Biodiversity , Fresh Water , Animals , California , Conservation of Natural Resources , Invertebrates/classification , Plants/classification , Vertebrates/classification
3.
PLoS One ; 4(7): e6392, 2009 Jul 29.
Article in English | MEDLINE | ID: mdl-19641600

ABSTRACT

Mediterranean climate is found on five continents and supports five global biodiversity hotspots. Based on combined downscaled results from 23 atmosphere-ocean general circulation models (AOGCMs) for three emissions scenarios, we determined the projected spatial shifts in the mediterranean climate extent (MCE) over the next century. Although most AOGCMs project a moderate expansion in the global MCE, regional impacts are large and uneven. The median AOGCM simulation output for the three emissions scenarios project the MCE at the end of the 21(st) century in Chile will range from 129-153% of its current size, while in Australia, it will contract to only 77-49% of its current size losing an area equivalent to over twice the size of Portugal. Only 4% of the land area within the current MCE worldwide is in protected status (compared to a global average of 12% for all biome types), and, depending on the emissions scenario, only 50-60% of these protected areas are likely to be in the future MCE. To exacerbate the climate impact, nearly one third (29-31%) of the land where the MCE is projected to remain stable has already been converted to human use, limiting the size of the potential climate refuges and diminishing the adaptation potential of native biota. High conversion and low protection in projected stable areas make Australia the highest priority region for investment in climate-adaptation strategies to reduce the threat of climate change to the rich biodiversity of the mediterranean biome.


Subject(s)
Adaptation, Physiological , Climate , Ecosystem , Biodiversity , Mediterranean Region
4.
Conserv Biol ; 23(1): 43-52, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18950475

ABSTRACT

: Global goals established by the Convention on Biological Diversity stipulate that 10% of the world's ecological regions must be effectively conserved by 2010. To meet that goal for the mediterranean biome, at least 5% more land must be formally protected over the next few years. Although global assessments identify the mediterranean biome as a priority, without biologically meaningful analysis units, finer-resolution data, and corresponding prioritization analysis, future conservation investments could lead to more area being protected without increasing the representation of unique mediterranean ecosystems. We used standardized analysis units and six potential natural vegetation types stratified by 3 elevation zones in a global gap analysis that systematically explored conservation priorities across the mediterranean biome. The highest levels of protection were in Australia, South Africa, and California-Baja California (from 9-11%), and the lowest levels of protection were in Chile and the mediterranean Basin (<1%). Protection was skewed to montane elevations in three out of five regions. Across the biome only one of the six vegetation types--mediterranean shrubland--exceeded 10% protection. The remaining vegetation types--grassland, scrub, succulent dominated, woodland, and forest--each had <3% protection. To guard against biases in future protection efforts and ensure the protection of species characteristic of the mediterranean biome, we identified biodiversity assemblages with <10% protection and subject to >30% conversion and suggest that these assemblages be elevated to high-priority status in future conservation efforts.


Subject(s)
Altitude , Conservation of Natural Resources/methods , Ecosystem , Analysis of Variance , Geography , Mediterranean Region , Research
5.
PLoS One ; 3(1): e1515, 2008 Jan 30.
Article in English | MEDLINE | ID: mdl-18231601

ABSTRACT

BACKGROUND: Conventional wisdom identifies biodiversity hotspots as priorities for conservation investment because they capture dense concentrations of species. However, density of species does not necessarily imply conservation 'efficiency'. Here we explicitly consider conservation efficiency in terms of species protected per dollar invested. METHODOLOGY/PRINCIPAL FINDINGS: We apply a dynamic return on investment approach to a global biome and compare it with three alternate priority setting approaches and a random allocation of funding. After twenty years of acquiring habitat, the return on investment approach protects between 32% and 69% more species compared to the other priority setting approaches. To correct for potential inefficiencies of protecting the same species multiple times we account for the complementarity of species, protecting up to three times more distinct vertebrate species than alternate approaches. CONCLUSIONS/SIGNIFICANCE: Incorporating costs in a return on investment framework expands priorities to include areas not traditionally highlighted as priorities based on conventional irreplaceability and vulnerability approaches.


Subject(s)
Budgets , Conservation of Natural Resources , Animals , Species Specificity
6.
PLoS Biol ; 5(9): e223, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17713985

ABSTRACT

Conservation priority-setting schemes have not yet combined geographic priorities with a framework that can guide the allocation of funds among alternate conservation actions that address specific threats. We develop such a framework, and apply it to 17 of the world's 39 Mediterranean ecoregions. This framework offers an improvement over approaches that only focus on land purchase or species richness and do not account for threats. We discover that one could protect many more plant and vertebrate species by investing in a sequence of conservation actions targeted towards specific threats, such as invasive species control, land acquisition, and off-reserve management, than by relying solely on acquiring land for protected areas. Applying this new framework will ensure investment in actions that provide the most cost-effective outcomes for biodiversity conservation. This will help to minimise the misallocation of scarce conservation resources.


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , Ecosystem , Animals , Conservation of Natural Resources/economics , Cost-Benefit Analysis , Mediterranean Region
SELECTION OF CITATIONS
SEARCH DETAIL
...