Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(18): 7153-7164, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35475617

ABSTRACT

Iron complexes with nitrido ligands are of interest as molecular analogues of key intermediates during N2-to-NH3 conversion in industrial or enzymatic processes. Dinuclear iron complexes with a bridging nitrido unit are mostly known in relatively high oxidation states (III/IV or IV/IV), originating from the decomposition of azidoiron precursors via high-valent Fe≡N intermediates. The use of a tetra-NHC macrocyclic scaffold ligand (NHC = N-heterocyclic carbene) has now allowed for the isolation of a series of organometallic µ-nitridodiiron complexes ranging from the mid-valent FeIII-N-FeIII (1) via mixed-valent FeIII-N-FeIV (type 4) to the high-valent FeIV-N-FeIV (type 5) species that are interconverted at moderate potentials, accompanied by axial ligand binding at the FeIV sites. Magnetic measurements and electron paramagnetic resonance spectroscopy showed the homovalent complexes to be diamagnetic and the mixed-valent system to feature an S = 1/2 ground state due to very strong antiferromagnetic coupling. The bonding in the Fe-N-Fe moiety has been further probed by crystallographic structure determination, 57Fe Mössbauer and UV-vis spectroscopies, as well as density functional theory computations, which revealed high covalency and nearly identical Fe-N distances across this redox series. The latter has been rationalized in terms of the nonbonding nature of the combination of Fe dz2 atomic orbitals from which electrons are successively removed upon oxidation, and these redox processes are best described as being metal-centered. The tetra-NHC-ligated µ-nitridodiiron series complements a set of related complexes with single-atom µ-oxido and µ-phosphido bridges, but the Fe-N-Fe core exhibits a comparatively high stability over several oxidation states. This promises interesting applications in view of the manifold catalytic uses of µ-nitridodiiron complexes based on macrocyclic N-donor porphinato(2-) or phthalocyaninato(2-) ligands.


Subject(s)
Ferric Compounds , Iron , Electrons , Ferric Compounds/chemistry , Iron/chemistry , Ligands , Oxidation-Reduction
2.
Angew Chem Int Ed Engl ; 59(14): 5696-5705, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-31769151

ABSTRACT

A neutral hybrid macrocycle with two trans-positioned N-heterocyclic carbenes (NHCs) and two pyridine donors hosts copper in three oxidation states (+I-+III) in a series of structurally characterized complexes (1-3). Redox interconversion of [LCu]+/2+/3+ is electrochemically (quasi)reversible and occurs at moderate potentials (E1/2 =-0.45 V and +0.82 V (vs. Fc/Fc+ )). A linear CNHC -Cu-CNHC arrangement and hemilability of the two pyridine donors allows the ligand to adapt to the different stereoelectronic and coordination requirements of CuI versus CuII /CuIII . Analytical methods such as NMR, UV/Vis, IR, electron paramagnetic resonance, and Cu Kß high-energy-resolution fluorescence detection X-ray absorption spectroscopies, as well as DFT calculations, give insight into the geometric and electronic structures of the complexes. The XAS signatures of 1-3 are textbook examples for CuI , CuII , and CuIII species. Facile 2-electron interconversion combined with the exposure of two basic pyridine N sites in the reduced CuI form suggest that [LCu]+/2+/3+ may operate in catalysis via coupled 2 e- /2 H+ transfer.

3.
Angew Chem Int Ed Engl ; 58(32): 10855-10858, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31094040

ABSTRACT

µ-Oxodiiron(III) species are air-stable and unreactive products of autoxidation processes of monomeric heme and non-heme iron(II) complexes. Now, the organometallic [(LNHC )FeIII -(µ-O)-FeIII (LNHC )]4+ complex 1 (LNHC is a macrocyclic tetracarbene) is shown to be reactive in C-H activation without addition of further oxidants. Studying the oxidation of dihydroanthracene, it was found that 1 thermally disproportionates in MeCN solution into its oxoiron(IV) (2) and iron(II) components; the former is the active species in the observed oxidation processes. Possible cleavage scenarios for 1 are shown by scrambling experiments and structural characterization of an unprecedented adduct of 1 and oxoiron(IV) complex 2. Kinetic analysis gave an equilibrium constant for the disproportionation of 1, which is very small (Keq =7.5±2.5×10-8 m). Increasing Keq might by a useful strategy for circumventing the formation of dead-end µ-oxodiiron(III) products during Fe-based homogeneous oxidation catalysis.

4.
Chemistry ; 25(15): 3918-3929, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30604906

ABSTRACT

Starting from their six-coordinate iron(II) precursor complexes [L8R Fe(MeCN)]2+ , a series of iron(III) complexes of the known macrocyclic tetracarbene ligand L8H and its new octamethylated derivative L8Me , both providing four imidazol-2-yliden donors, were synthesized. Several five- and six-coordinate iron(III) complexes with different axial ligands (Cl- , OTf- , MeCN) were structurally characterized by X-ray diffraction and analyzed in detail with respect to their spin state variations, using a bouquet of spectroscopic methods (NMR, UV/Vis, EPR, and 57 Fe Mößbauer). Depending on the axial ligands, either low-spin (S=1/2) or intermediate-spin (S=3/2) states were observed, whereas high-spin (S=5/2) states were inaccessible because of the extremely strong in-plane σ-donor character of the macrocyclic tetracarbene ligands. These findings are reminiscent of the spin state patterns of topologically related ferric porphyrin complexes. The ring conformations and dynamics of the macrocyclic tetracarbene ligands in their iron(II), iron(III) and µ-oxo diiron(III) complexes were also studied.

5.
J Am Chem Soc ; 139(26): 8939-8949, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28557448

ABSTRACT

C-H bond activation mediated by oxo-iron (IV) species represents the key step of many heme and nonheme O2-activating enzymes. Of crucial interest is the effect of spin state of the FeIV(O) unit. Here we report the C-H activation kinetics and corresponding theoretical investigations of an exclusive tetracarbene ligated oxo-iron(IV) complex, [LNHCFeIV(O)(MeCN)]2+ (1). Kinetic traces using substrates with bond dissociation energies (BDEs) up to 80 kcal mol-1 show pseudo-first-order behavior and large but temperature-dependent kinetic isotope effects (KIE 32 at -40 °C). When compared with a topologically related oxo-iron(IV) complex bearing an equatorial N-donor ligand, [LTMCFeIV(O) (MeCN)]2+ (A), the tetracarbene complex 1 is significantly more reactive with second order rate constants k'2 that are 2-3 orders of magnitude higher. UV-vis experiments in tandem with cryospray mass spectrometry evidence that the reaction occurs via formation of a hydroxo-iron(III) complex (4) after the initial H atom transfer (HAT). An extensive computational study using a wave function based multireference approach, viz. complete active space self-consistent field (CASSCF) followed by N-electron valence perturbation theory up to second order (NEVPT2), provided insight into the HAT trajectories of 1 and A. Calculated free energy barriers for 1 reasonably agree with experimental values. Because the strongly donating equatorial tetracarbene pushes the Fe-dx2-y2 orbital above dz2, 1 features a dramatically large quintet-triplet gap of ∼18 kcal/mol compared to ∼2-3 kcal/mol computed for A. Consequently, the HAT process performed by 1 occurs on the triplet surface only, in contrast to complex A reported to feature two-state-reactivity with contributions from both triplet and quintet states. Despite this, the reactive FeIV(O) units in 1 and A undergo the same electronic-structure changes during HAT. Thus, the unique complex 1 represents a pure "triplet-only" ferryl model.

6.
Inorg Chem ; 54(20): 9770-6, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26445295

ABSTRACT

A disulfide-bridged diiron complex with [Fe-S-S-Fe] core, which represents an isomer of the common biological [2Fe-2S] ferredoxin-type clusters, was synthesized using strongly σ-donating macrocyclic tetracarbene capping ligands. Though the complex is quite labile in solution, single crystals were obtained, and the structure was elucidated by X-ray diffraction. The electron-rich iron-sulfur core is found to show rather unusual magnetic and electronic properties. Experimental data and density functional theory studies indicate extremely strong antiferromagnetic coupling (-J > 800 cm(-1)) between two low-spin iron(III) ions via the S2(2-) bridge, and the intense near-IR absorption characteristic for the [Fe-S-S-Fe] core was assigned to a S → Fe ligand-to-metal charge transfer transition.


Subject(s)
Disulfides/chemistry , Ferric Compounds/chemistry , Crystallography, X-Ray , Dimerization , Electrons , Ferric Compounds/chemical synthesis , Models, Molecular , Molecular Structure , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...