Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Neurol ; 320: 113003, 2019 10.
Article in English | MEDLINE | ID: mdl-31260658

ABSTRACT

Germinal matrix hemorrhage (GMH) results from the rupture of the immature thin-walled blood vessels and consequent bleeding into the subependymal germinal matrix and possible lateral ventricles. The purpose of this study is to investigate how astrogliosis impacts the glymphatic-meningeal lymphatic system in cerebrospinal fluid (CSF) reabsorption after GMH and how the anti-scarring agent olomoucine attenuates post-hemorrhagic hydrocephalus. GMH was induced by stereotaxic collagenase infusion into P7 Sprague-Dawley rats of both sexes. Western blot and immunofluorescence were used to assess astrogliosis and how astrogliosis affects glymphatic function by measuring Aquaporin-4 expression. Intracisternal injection of fluorescence tracer was used to measure CSF diffusion throughout the brain, its dispersion in the paravascular area and CSF drainage into the deep cervical lymph nodes at 28 days after GMH. Both short-term and long-term behavioral tests were used to assess the neurological outcomes. Nissl staining was used to assess the morphological changes at 28 days after hemorrhage. GMH elicited astrogliotic scarring and reduced the exchange between CSF and interstitial fluid, as well as CSF reabsorption through the meningeal lymphatic vessels. This might be associated with redistribution of Aquaporin-4. Olomoucine ameliorated scar tissue formation and attenuated post-hemorrhagic hydrocephalus. These findings of this study suggested that the glymphatic system might play a role in CSF reabsorption in neonates following GMH. Scar tissue formation impairs this CSF clearance route, and therefore astrogliosis inhibition might be a potential therapeutic strategy for neonatal post-hemorrhagic hydrocephalus.


Subject(s)
Cerebral Hemorrhage/cerebrospinal fluid , Gliosis/pathology , Glymphatic System/physiology , Hydrocephalus/cerebrospinal fluid , Animals , Animals, Newborn , Aquaporin 4/metabolism , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/pathology , Cerebrospinal Fluid/metabolism , Female , Hydrocephalus/etiology , Hydrocephalus/pathology , Male , Rats , Rats, Sprague-Dawley
2.
J Neurosci ; 38(34): 7378-7391, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30037831

ABSTRACT

Development of cortical interneurons continues until the end of human pregnancy. Premature birth deprives the newborns from the supply of maternal estrogen and a secure intrauterine environment. Indeed, preterm infants suffer from neurobehavioral disorders. This can result from both preterm birth and associated postnatal complications, which might disrupt recruitment and maturation of cortical interneurons. We hypothesized that interneuron subtypes, including parvalbumin-positive (PV+), somatostatin-positive (SST+), calretinin-positive (CalR+), and neuropeptide Y-positive (NPY+) interneurons, were recruited in the upper and lower cortical layers in a distinct manner with advancing gestational age. In addition, preterm birth would disrupt the heterogeneity of cortical interneurons, which might be reversed by estrogen treatment. These hypotheses were tested by analyzing autopsy samples from premature infants and evaluating the effect of estrogen supplementation in prematurely delivered rabbits. The PV+ and CalR+ neurons were abundant, whereas SST+ and NPY+ neurons were few in cortical layers of preterm human infants. Premature birth of infants reduced the density of PV+ or GAD67+ neurons and increased SST+ interneurons in the upper cortical layers. Importantly, 17 ß-estradiol treatment in preterm rabbits increased the number of PV+ neurons in the upper cortical layers relative to controls at postnatal day 14 (P14) and P21 and transiently reduced SST population at P14. Moreover, protein and mRNA levels of Arx, a key regulator of cortical interneuron maturation and migration, were higher in estrogen-treated rabbits relative to controls. Therefore, deficits in PV+ and excess of SST+ neurons in premature newborns are ameliorated by estrogen replacement, which can be attributed to elevated Arx levels. Estrogen replacement might enhance neurodevelopmental outcomes in extremely preterm infants.SIGNIFICANCE STATEMENT Premature birth often leads to neurodevelopmental delays and behavioral disorders, which may be ascribed to disturbances in the development and maturation of cortical interneurons. Here, we show that preterm birth in humans is associated with reduced population of parvalbumin-positive (PV+) neurons and an excess of somatostatin-expressing interneurons in the cerebral cortex. More importantly, 17 ß-estradiol treatment increased the number of PV+ neurons in preterm-born rabbits, which appears to be mediated by an elevation in the expression of Arx transcription factor. Hence the present study highlights prematurity-induced reduction in PV+ neurons in human infants and reversal in their population by estrogen replacement in preterm rabbits. Because preterm birth drops plasma estrogen level 100-fold, estrogen replacement in extremely preterm infants might improve their developmental outcome and minimize neurobehavioral disorders.


Subject(s)
Cerebral Cortex/pathology , Estradiol/pharmacology , Infant, Premature, Diseases/pathology , Interneurons/drug effects , Animals , Animals, Newborn , Calbindin 2/analysis , Cell Count , Female , Gestational Age , Glutamate Decarboxylase/analysis , Humans , Infant, Newborn , Infant, Premature , Interneurons/chemistry , Interneurons/classification , Interneurons/physiology , Male , Nerve Tissue Proteins/analysis , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Neuropeptide Y/analysis , Parvalbumins/analysis , Rabbits , Somatostatin/analysis , Transcription Factors/biosynthesis , Transcription Factors/genetics
3.
PLoS One ; 11(9): e0163280, 2016.
Article in English | MEDLINE | ID: mdl-27658057

ABSTRACT

Vasovagal syncope, a contributing factor to elderly falls, is the transient loss of consciousness caused by decreased cerebral perfusion. Vasovagal syncope is characterized by hypotension, bradycardia, and reduced cerebral blood flow, resulting in fatigue, altered coordination, and fainting. The purpose of this study is to develop an animal model which is similar to human vasovagal syncope and establish an awake animal model of vasovagal syncope. Male Sprague-Dawley rats were subjected to sinusoidal galvanic vestibular stimulation (sGVS). Blood pressure, heart rate, and cerebral blood flow were monitored before, during, and post-stimulation. sGVS resulted in hypotension, bradycardia, and decreased cerebral blood flow. One cohort of animals was subjected to sGVS while freely moving. sGVS in awake animals produced vasovagal syncope-like symptoms, including fatigue and uncoordinated movements; two animals experienced spontaneous falling. Another cohort of animals was preconditioned with isoflurane for several days before being subjected to sGVS. Isoflurane preconditioning before sGVS did not prevent sGVS-induced hypotension or bradycardia, yet isoflurane preconditioning attenuated sGVS-induced cerebral blood flow reduction. The sGVS rat model mimics elements of human vasovagal syncope pathophysiology (hypotension, bradycardia, and decreased cerebral perfusion), including behavioral symptoms such as fatigue and altered balance. This study indicates that the sGVS rat model is similar to human vasovagal syncope and that therapies directed at preventing cerebral hypoperfusion may decrease syncopal episodes and reduce injuries from syncopal falls.

4.
Neurobiol Dis ; 82: 349-358, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26176793

ABSTRACT

BACKGROUND AND PURPOSE: Edema formation, inflammation and increased blood-brain barrier permeability contribute to poor outcomes after intracerebral hemorrhage (ICH). This study examined the therapeutic effect of dimethyl fumarate (DMF), a fumaric acid ester that activates nuclear factor erythroid-2 related factor 2 (Nrf2) and Nrf2 heterodimerization effector protein musculo-aponeurotic fibrosarcoma-G (MAFG) in a murine ICH model. METHODS: Male CD-1 mice (n=176) were subjected to intrastriatal infusion of bacterial collagenase (n=126), autologous blood (n=18) or sham surgery (n=32). Four (4) animals not subjected to ICH (naive) were also included in the study. After ICH, animals either received vehicle, dimethyl fumarate (10 mg or 100 mg/kg) or casein kinase 2 inhibitor (E)-3-(2,3,4,5-tetrabromophenyl)acrylic acid (TBCA). Thirty-two mice also received scrambled siRNA or MAFG siRNA 24h before ICH. Brain water content and neurological function were evaluated. RESULTS: Dimethyl fumarate reduced Evans blue dye extravasation, decreased brain water content, and improved neurological deficits at 24 and 72 h after ICH. Casein kinase 2 inhibitor TBCA and MAFG siRNA prevented the effect of dimethyl fumarate on brain edema and neurological function. After ICH, ICAM-1 levels increased and casein kinase 2 levels decreased. Dimethyl fumarate reduced ICAM-1 but enhanced casein kinase 2 levels. Again, casein kinase 2 inhibitor TBCA and MAFG siRNA abolished the effect of dimethyl fumarate on ICAM-1 and casein kinase 2. Dimethyl fumarate preserved pNrf2 and MAFG expression in the nuclear lysate after ICH and the effect of dimethyl fumarate was abolished by casein kinase 2 inhibitor TBCA and MAFG siRNA. Dimethyl fumarate reduced microglia activation in peri-hematoma areas after ICH. The protective effect of dimethyl fumarate on brain edema and neurological function was also observed in a blood injection mouse model. CONCLUSION: Dimethyl fumarate ameliorated inflammation, reduced blood-brain barrier permeability, and improved neurological outcomes by casein kinase 2 and Nrf2 signaling pathways after experimental ICH in mice.


Subject(s)
Casein Kinase II/metabolism , Cerebral Hemorrhage/drug therapy , Dimethyl Fumarate/pharmacology , NF-E2-Related Factor 2/metabolism , Neuroprotective Agents/pharmacology , Acrylates/pharmacology , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/enzymology , Brain Edema/drug therapy , Brain Edema/enzymology , Casein Kinase II/antagonists & inhibitors , Cerebral Hemorrhage/enzymology , Collagenases , Disease Models, Animal , Intercellular Adhesion Molecule-1/metabolism , MafG Transcription Factor/genetics , MafG Transcription Factor/metabolism , Male , Mice , Microglia/drug effects , Microglia/enzymology , Neuroimmunomodulation/drug effects , Neuroimmunomodulation/physiology , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Repressor Proteins/genetics , Repressor Proteins/metabolism
5.
Expert Opin Pharmacother ; 15(5): 659-80, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24491068

ABSTRACT

INTRODUCTION: Stroke is the world's second leading cause of death. Although recombinant tissue plasminogen activator is an effective treatment for cerebral ischemia, its limitations and ischemic stroke's complex pathophysiology dictate an increased need for the development of new therapeutic interventions. Small molecule inhibitors (SMIs) have the potential to be used as novel therapeutic modalities for stroke, since many preclinical and clinical trials have established their neuroprotective capabilities. AREAS COVERED: This paper provides a summary of the pathophysiology of stroke as well as clinical and preclinical evaluations of SMIs as therapeutic interventions for cerebral ischemia. Cerebral ischemia is broken down into four mechanisms in this article: thrombosis, ischemic insult, mitochondrial injury and immune response. Insight is provided into preclinical and current clinical assessments of SMIs targeting each mechanism as well as a summary of reported results. EXPERT OPINION: Many studies demonstrated that pre- or post-treatment with certain SMIs significantly ameliorated adverse effects from stroke. Although some of these promising SMIs moved on to clinical trials, they generally failed, possibly due to the poor translation of preclinical to clinical experiments. Yet, there are many steps being taken to improve the quality of experimental research and translation to clinical trials.


Subject(s)
Brain Ischemia/drug therapy , Stroke/drug therapy , Animals , Anticoagulants/therapeutic use , Antioxidants/therapeutic use , Brain Ischemia/immunology , Brain Ischemia/metabolism , Brain Ischemia/physiopathology , Calcium Channel Blockers/therapeutic use , Clinical Trials as Topic , Drug Therapy, Combination , Humans , Inflammation/drug therapy , Inflammation/immunology , Mitochondria/metabolism , Neuroprotective Agents/therapeutic use , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Stroke/immunology , Stroke/metabolism , Stroke/physiopathology , Thrombosis/drug therapy , Thrombosis/metabolism , Thrombosis/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...