Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
FASEB J ; 37(4): e22865, 2023 04.
Article in English | MEDLINE | ID: mdl-36934391

ABSTRACT

Hypothyroidism exerts deleterious effects on immunity, but the precise role of the hypothalamic-pituitary-thyroid (HPT) axis in immunoregulatory and tolerogenic programs is barely understood. Here, we investigated the mechanisms underlying hypothyroid-related immunosuppression by examining the regulatory role of components of the HPT axis. We first analyzed lymphocyte activity in mice overexpressing the TRH gene (Tg-Trh). T cells from Tg-Trh showed increased proliferation than wild-type (WT) euthyroid mice in response to polyclonal activation. The release of Th1 pro-inflammatory cytokines was also increased in Tg-Trh and TSH levels correlated with T-cell proliferation. To gain further mechanistic insights into hypothyroidism-related immunosuppression, we evaluated T-cell subpopulations in lymphoid tissues of hypothyroid and control mice. No differences were observed in CD3/CD19 or CD4/CD8 ratios between these strains. However, the frequency of regulatory T cells (Tregs) was significantly increased in hypothyroid mice, and not in Tg-Trh mice. Accordingly, in vitro Tregs differentiation was more pronounced in naïve T cells isolated from hypothyroid mice. Since Tregs overexpress galectin-1 (Gal-1) and mice lacking this lectin (Lgals1-/- ) show reduced Treg function, we investigated the involvement of this immunoregulatory lectin in the control of Tregs in settings of hypothyroidism. Increased T lymphocyte reactivity and reduced frequency of Tregs were found in hypothyroid Lgals1-/- mice when compared to hypothyroid WT animals. This effect was rescued by the addition of recombinant Gal-1. Finally, increased expression of Gal-1 was found in Tregs purified from hypothyroid WT mice compared with their euthyroid counterpart. Thus, a substantial increase in the frequency and activity of Gal-1-expressing Tregs underlies immunosuppression associated with hypothyroid conditions, with critical implications in immunopathology, metabolic disorders, and cancer.


Subject(s)
Hypothyroidism , Thyrotropin , Mice , Animals , Thyrotropin/metabolism , Thyrotropin-Releasing Hormone/pharmacology , T-Lymphocytes, Regulatory/metabolism , Galectin 1/genetics , Hypothyroidism/metabolism , Immunosuppression Therapy
2.
J Cell Physiol ; 226(12): 3208-18, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21344381

ABSTRACT

Thyroid hormones (THs) exert a broad range of actions on development, growth, and cell differentiation by both genomic and nongenomic mechanisms. THs regulate lymphocyte function, but the participation of nongenomic actions is still unknown. Here the contribution of both genomic and nongenomic effects on TH-induced division of T cells was studied by using free and noncell permeable THs coupled to agarose (TH-ag). THs-ag led to cell division, but to a lesser extent than free hormones. THs induced nongenomically the rapid translocation of protein kinase C (PKC) ζ isoform to cell membranes, extracellular-signal-regulated kinases (ERK1/2) phosphorylation and nuclear factor-κB (NF-κB) activation. The signaling cascade include sphingomyelinases acting up-stream the activation of PKCζ isoform, while ERK and NF-κB are activated downstream this PKC isoenzyme. Both free and THs-ag increased the protein and mRNA levels of TH nuclear receptor TRα1, while only free hormones incremented the inducible NOS gene and protein levels as well as a calcium independent NOS activity. Both effects were blunted by PKCζ inhibition. These results indicate that THs, by triggering a nongenomic signaling cascade that involves Smases-mediated activation of PKCζ, lead to ERK 1/2 and NF-κB activation and to the genomic increase of TRs and the inducible nitric oxide synthase protein and mRNA levels, improving T lymphocyte proliferation. These finding not only contribute to the understanding of the mechanisms involved in TH modulation of lymphocyte physiology, but would also point out for the first time the interplay between genomic and nongenomic TH actions in T cells.


Subject(s)
Cell Proliferation , Nitric Oxide Synthase Type II/metabolism , T-Lymphocytes/enzymology , Thyroid Hormone Receptors alpha/metabolism , Thyroxine/metabolism , Triiodothyronine/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Enzymologic , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/genetics , Phosphorylation , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Transport , RNA, Messenger/metabolism , Signal Transduction , Sphingomyelin Phosphodiesterase/metabolism , T-Lymphocytes/drug effects , Thyroid Hormone Receptors alpha/genetics , Time Factors , Up-Regulation
3.
J Endocrinol ; 189(1): 45-55, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16614380

ABSTRACT

Thyroid hormones play critical roles in differentiation, growth and metabolism, but their participation in immune system regulation has not been completely elucidated. Modulation of in vivo thyroid status was used to carry out an integrative analysis of the role of the hypothalamus-pituitary-thyroid (HPT) axis in T and B lymphocyte activity. The participation of the protein kinase C (PKC) signaling pathway and the release of some cytokines upon antigenic stimulation were analyzed. Lymphocytes from hyperthyroid mice displayed higher T-and B-cell mitogen-induced proliferation, and those from hypothyroid mice displayed lower T- and B-cell mitogen-induced proliferation, compared with euthyroid animals. Reversion of hypothyroid state by triiodothyronine (T3) administration recovered the proliferative responses. No differences were found in lymphoid subset balance. Both total PKC content and mitogen-induced PKC translocation were higher in T and B cells from hyperthyroid mice, and lower in cells from hypothyroid mice, compared with controls. Levels of thyroid-stimulating (TSH) and TSH-releasing (TRH) hormones were not directly related to lymphocyte proliferative responses. After immunization with sheep red blood cells (SRBCs) and re-stimulation, in vitro spleen cells from hyper- or hypothyroid mice showed, respectively, increased or decreased production of interleukin (IL)-2 and interferon (IFN)-gamma cytokines. Additionally, an increase in IL-6 and IFN-gamma levels was found in hyperthyroid cells after in vivo injection and in vitro re-stimulation with lipopolysaccharide (LPS). Our results show for the first time a thyroid hormone-mediated regulation of PKC content and of cytokine production in lymphocytes; this regulation could be involved in the altered responsiveness to mitogen-induced proliferation of T and B cells. The results also confirm the important role that these hormones play in regulating lymphocyte reactivity.


Subject(s)
Hypothalamus/immunology , Lymphocytes/immunology , Pituitary Gland/immunology , Protein Kinase C/immunology , Thyroid Gland/immunology , Animals , Antigens, CD/immunology , B-Lymphocytes/immunology , Cell Division/immunology , Cell Membrane/immunology , Cells, Cultured , Cytokines/immunology , Female , Hypothalamo-Hypophyseal System/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Mitogens/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , Thyroid Hormones/blood , Thyrotropin/blood
4.
Biochim Biophys Acta ; 1588(2): 179-88, 2002 Nov 20.
Article in English | MEDLINE | ID: mdl-12385783

ABSTRACT

Protein kinase C (PKC) is critical for T lymphocyte activation and proliferation, while nitric oxide synthase (NOS) may function both as an activator or inhibitor of T cell apoptosis. Both enzymatic activities were studied in T lymphoma cells in comparison to normal and activated T lymphocytes. Here we show a higher translocation of PKC in BW5147 lymphoma cells than in mitogen-stimulated T lymphocytes. Tumor cells overexpressed PKC zeta isoform, while high levels of the PKC beta isotype were found in mitogen-stimulated T lymphocytes. Moreover, tumoral T cells showed high NOS activity, almost undetectable in normal or stimulated T lymphocytes. PKC and NOS inhibitors or the intracellular delivery of an anti-PKC zeta antibody diminished both NO production and proliferation in tumor cells. These results suggest that atypical PKC zeta isoform expression and its association with NOS activity regulation would participate in the multistep process leading to BW5147 cell malignant transformation.


Subject(s)
Nitric Oxide Synthase/metabolism , Protein Kinase C/biosynthesis , Animals , Antibodies/pharmacology , Cell Division , Cell Survival , Isoenzymes/biosynthesis , Isoenzymes/immunology , Lymphoma, T-Cell , Mice , Mitogens , Protein Kinase C/immunology , Protein-Tyrosine Kinases/metabolism , Tumor Cells, Cultured , Type C Phospholipases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...