Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 14.
Article in English | MEDLINE | ID: mdl-36015148

ABSTRACT

Radiolabeled FAPI (fibroblast activation protein inhibitors) recently gained attention as widely applicable imaging and potential therapeutic compounds targeting CAF (cancer-associated fibroblasts) or DAF (disease-associated fibroblasts in benign disorders). Moreover, the use of FAPI has distinct advantages compared to FDG (e.g., increased sensitivity in regions with high glucose metabolism, no need for fasting, and rapid imaging). In this study, we wanted to evaluate the radiochemical synthesis and the clinical properties of the new CAF-targeting tracer [68Ga]Ga-DATA5m.SA.FAPi. The compound consists of a (radio)chemically easy to use hybrid chelate DATA.SA, which can be labeled at low temperatures, making it an interesting molecule for 'instant kit-type' labeling, and a squaric acid moiety that provides distinct advantages for synthesis and radiolabeling. Our work demonstrates that automatic synthesis of the FAP inhibitor [68Ga]Ga-DATA5m.SA.FAPi is feasible and reproducible, providing convenient access to this new hybrid chelator-based tracer. Our studies demonstrated the diagnostic usability of [68Ga]Ga-DATA5m.SA.FAPi for the unambiguous detection of cancer-associated fibroblasts of various carcinomas and their metastases (NSCLC, liposarcoma, parotid tumors, prostate cancer, and pancreas adenocarcinoma), while physiological uptake in brain, liver, intestine, bone, and lungs was very low.

2.
Eur J Neurosci ; 39(4): 623-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24528135

ABSTRACT

The baroreceptor reflex controls spontaneous fluctuations in blood pressure. One major control variable of the baroreflex is the sympathetic vasoconstrictor activity to muscles [MSNA; burst frequency (BF) and burst incidence (BI)], which can be quantitatively assessed by microneurography. We aimed to investigate the central regions involved in baroreflex regulation of MSNA. Healthy men (mean age 25 years) participated in three experimental sessions. (i) Microneurography recordings of MSNA from the left peroneal nerve during rest and baroreflex unloading, induced by lower body negative pressure (LBNP; -40 mmHg). If MSNA could be reliably recorded throughout this procedure (n = 15), the subjects entered the positron emission tomography (PET) experiments. The two PET sessions took place in a randomised order. Cerebral glucose metabolism (18-fluorodeoxyglucose) was analysed after: (ii) baroreflex unloading (LBNP); and (iii) control condition (lying in the LBNP chamber without suction). The PET data were analysed employing SPM8. LBNP elicited a significant increase in MSNA in all successfully recorded subjects (BI: P = 0.001; F = 5.54; BF: P < 0.001; F = 36.59). As compared with the control condition, LBNP was associated with increased PET regional glucose metabolism bilaterally in the orbitofrontal cortex (OFC; BA 11, 47). Related to the rise of BF, there was increased activation of the left OFC (BA 11); related to the rise of BI there was increased activation of the brainstem corresponding to the rostral ventrolateral medulla. Our data support a role for the ventrolateral medulla and the OFC in baroreflex-mediated control of MSNA in humans.


Subject(s)
Baroreflex , Brain/physiology , Glucose/metabolism , Peroneal Nerve/physiology , Adult , Brain/diagnostic imaging , Brain/metabolism , Humans , Male , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Organ Specificity , Positron-Emission Tomography
3.
Neuroimage ; 49(1): 731-7, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19703571

ABSTRACT

The endogenous opioid system is involved in many body functions including pain processing and analgesia. To determine the role of basal opioid receptor availability in the brain in pain perception, twenty-three healthy subjects underwent positron emission tomography (PET) utilizing the subtype-nonselective opioid antagonist [(18)F]diprenorphine, quantitative sensory testing (QST) and the cold pressor test. Binding potentials (BPs) were calculated using a non-invasive reference tissue model and statistical parametric mapping was applied for t-statistical analysis on a voxelwise basis. We found that cold pain-sensitive subjects present a significantly lower BP in regions including the bilateral insular cortex and the left orbitofrontal cortex. In addition, correlation analysis revealed an inverse correlation between opioid BP in the bilateral motor and premotor region and perceptual wind-up. These findings indicate that interindividual differences in pain perception are partially accounted for by basal opioid receptor availability. A secondary aim of this study was to investigate the contribution of basal opioid receptor availability to the perception of non-nociceptive stimuli. The following negative correlations between regional opioid BP and scores of QST parameters were found: BP in the right premotor cortex and scores of alternating cold and warm stimuli, BP in the left midcingular cortex and scores of cold detection threshold, BP in the left insula and scores of mechanical detection threshold. These results suggest that the opioid receptor system is involved in the perception not only of pain but also of non-painful somatosensory stimuli.


Subject(s)
Brain/diagnostic imaging , Diprenorphine/analogs & derivatives , Perception/physiology , Receptors, Opioid/physiology , Sensation/physiology , Adult , Brain Chemistry , Cold Temperature , Data Interpretation, Statistical , Humans , Male , Middle Aged , Pain/physiopathology , Pain Threshold/physiology , Physical Stimulation , Positron-Emission Tomography , Pressure , Radiopharmaceuticals , Sensory Thresholds/physiology , Somatosensory Cortex/physiology , Young Adult
4.
J Nucl Med ; 49(8): 1257-61, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18632824

ABSTRACT

UNLABELLED: Little is known about the neurobiologic correlates of human personality. On the basis of the key role of the central opioidergic system in addiction and substance abuse, we investigated the relationship between certain personality traits that are supposed to be relevant in addiction and the opioid receptor status in healthy subjects. METHODS: We investigated 23 healthy male volunteers who were extensively clinically tested to exclude substance abuse. All of the subjects underwent 1 PET scan with the subtype-nonselective opioidergic radioligand 18F-fluoroethyl-diprenorphine under resting conditions without sensory or cognitive stimulation. Subsequently, the subjects were psychologically tested for the personality traits novelty seeking, harm avoidance, reward dependence, and persistence, according to Cloninger's biosocial model of personality. The binding potential (BP) as a parameter of regional cerebral opioid receptor availability was computed by means of the modified Logan plot using the occipital cortex as a reference region. Further imaging data analysis was performed using statistical parametric mapping; after stereotactic normalization, the correlations were calculated between the regional BP and the psychologic scores on a voxel-by-voxel basis. RESULTS: The correlation analysis between personality dimensions and opioid receptor availability showed a significant (P < 0.001) positive correlation between the scores of reward dependence and the BP of the bilateral ventral striatum with nucleus accumbens (z scores, 4.52 and 4.33, respectively). The additionally performed region-of-interest-based correlation analysis yielded correlation coefficients of r = 0.84 and r = 0.81 for the left and right ventral striata, respectively. No further significant correlations were detectable between the other personality dimensions and cerebral opioid receptor binding. CONCLUSION: In healthy subjects, personality traits, which might be predisposing for addictive behavior, are correlated to the opioidergic neurotransmission in core structures of the human reward system.


Subject(s)
Brain/metabolism , Diprenorphine/analogs & derivatives , Radiopharmaceuticals , Receptors, Opioid/metabolism , Reward , Adult , Basal Ganglia/diagnostic imaging , Basal Ganglia/metabolism , Brain/diagnostic imaging , Brain Mapping , Caudate Nucleus/diagnostic imaging , Caudate Nucleus/metabolism , Diprenorphine/metabolism , Fluorine Radioisotopes , Humans , Male , Middle Aged , Nucleus Accumbens/diagnostic imaging , Nucleus Accumbens/metabolism , Personality , Radionuclide Imaging , Radiopharmaceuticals/metabolism
5.
Neuropsychopharmacology ; 29(8): 1527-37, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15085090

ABSTRACT

The acute influence of ethanol on cerebral activity induces complex psycho-physiological effects that are considerably more pronounced during acute ethanol influx than during maximal blood alcohol concentration (elimination phase). Despite the psychiatric and forensic relevance of these different ethanol effects, the underlying neuronal mechanisms are still unclear. In total, 20 male healthy volunteers were investigated each with three different experimental conditions in a randomized order using an intravenous ethanol challenge (40 g bolus infusion): during influx phase, elimination phase, and under placebo condition. During and after the ethanol (or placebo) infusion, neuropsychological testing of divided attention for visual and auditory stimuli was performed with subsequent 18-FDG PET acquisition. The PET data were analysed using SPM99. Ethanol influx and elimination phase showed focal activations in the bilateral striatum and frontal cortex and deactivations in the occipital cortex. The comparison of influx phase vs elimination phase revealed activations in the anterior cingulate and right prefrontal cortex, relevant deactivations were found in the left superior temporal cortex including Wernicke's area. Neuropsychological testing showed an attentional impairment under ethanol influx compared to ethanol elimination and placebo with an inverse correlation of the attentional performance for auditory stimuli to occipital activity and for visual stimuli to the left temporal (including auditory) cortex. Acute ethanol administration in healthy volunteers stimulates those striatal regions that are considered to have a particular relevance for alcohol craving ('reward system'). Modality specific reciprocal inhibition of sensory cortex activity seems to be relevant for attentional performance during acute alcohol impact.


Subject(s)
Attention/drug effects , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Neostriatum/physiology , Neurons/drug effects , Reward , Adult , Brain Chemistry/drug effects , Central Nervous System Depressants/blood , Central Nervous System Depressants/pharmacokinetics , Ethanol/blood , Ethanol/pharmacokinetics , Fluorodeoxyglucose F18 , Glucose/metabolism , Humans , Image Processing, Computer-Assisted , Male , Neostriatum/diagnostic imaging , Neuropsychological Tests , Single-Blind Method , Tomography, Emission-Computed
SELECTION OF CITATIONS
SEARCH DETAIL