Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 22(20): 23980-9, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25321974

ABSTRACT

We have developed a diode-laser based master oscillator power amplifier (MOPA) light source which emits high-power spectrally stabilized and nearly-diffraction limited optical pulses in the nanoseconds range as required by many applications. The MOPA consists of a distributed Bragg reflector (DBR) laser as master oscillator driven by a constant current and a ridge waveguide power amplifier (PA) which can be driven by a constant current (DC) or by rectangular current pulses with a width of 5 ns at a repetition frequency of 200 kHz. Under pulsed operation the amplifier acts as an optical gate, converting the CW input beam emitted by the DBR laser into a train of short amplified optical pulses. With this experimental MOPA arrangement no relaxation oscillations occur. A continuous wave power of 1 W under DC injection and a pulse power of 4 W under pulsed operation are reached. For both operational modes the optical spectrum of the emission of the amplifier exhibits a peak at a constant wavelength of 973.5 nm with a spectral width < 10 pm.

2.
Appl Opt ; 53(15): 3262-6, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24922212

ABSTRACT

In this work, frequency doubling of a passively mode-locked 3.5 mm long monolithic distributed Bragg reflector diode laser is investigated experimentally. At 1064 nm, optical pulses with a duration of 12.4 ps are generated at a repetition rate of 13 GHz and a peak power of 825 mW, resulting in an average power of 133 mW. Second-harmonic generation is carried out in a periodically poled MgO-doped LiNbO3 ridge waveguide at a normalized nonlinear conversion efficiency of 930%/W. A maximum average second-harmonic power of 40.9 mW, corresponding to a pulse energy of 3.15 pJ, is reached in the experiment at an opto-optical conversion efficiency of 30.8%. The normalized nonlinear conversion efficiency in mode-locked operation is more than 2 times larger compared to continuous-wave operation.

3.
Opt Express ; 21(3): 2777-86, 2013 Feb 11.
Article in English | MEDLINE | ID: mdl-23481734

ABSTRACT

We present detailed experimental investigations of the temporal, spectral and spatial behavior of a gain-switched distributed feedback (DFB) laser emitting at a wavelength of 1064 nm. Gain-switching is achieved by injecting nearly rectangular shaped current pulses having a length of 50 ns and a very high amplitude up to 2.5 A. The repetition frequency is 200 kHz. The laser has a ridge waveguide (RW) for lateral waveguiding with a ridge width of 3 µm and a cavity length of 1.5 mm. Time resolved investigations show, depending on the amplitude of the current pulses, that the optical power exhibits different types of oscillatory behavior during the pulses, accompanied by changes in the lateral near field intensity profiles and optical spectra. Three different types of instabilities can be distinguished: mode beating with frequencies between 25 GHz and 30 GHz, switching between different lateral intensity profiles with a frequency of 0.4 GHz and self-sustained oscillations with a frequency of 4 GHz. The investigations are of great relevance for the utilization of gain-switched DFB-RW lasers as seed lasers for fiber laser systems and in other applications, which require a high optical power.


Subject(s)
Lasers , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Energy Transfer , Equipment Design , Equipment Failure Analysis , Feedback
4.
Opt Express ; 20(7): 7002-7, 2012 Mar 26.
Article in English | MEDLINE | ID: mdl-22453379

ABSTRACT

We report on the generation and amplification of pulses with pulse widths of 400 - 1000 ps at 1064 nm. For pulse generation an ultra-fast semiconductor modulator is used that modulates a cw-beam of a DFB diode laser. The pulse lengths could be adjusted by the use of a voltage control. The pulses were amplified in a solid state Nd:YVO4 regenerative amplifier to an average power of up to 47.7 W at 100 - 816 kHz.


Subject(s)
Lasers, Semiconductor , Equipment Design , Equipment Failure Analysis
5.
Opt Express ; 15(18): 11364-9, 2007 Sep 03.
Article in English | MEDLINE | ID: mdl-19547494

ABSTRACT

A ridge-waveguide InGaAs/GaAsP laser, emitting up to 250 mW in a single lateral and longitudinal mode at a wavelength of 894 nm, is presented. The distributed feedback is provided by a second order grating, formed into an InGaP/GaAs/InGaP multilayer structure. Owing to the stable lasing frequency, the large side mode suppression ratio (> 40 dB) and small spectral line width (< 200 kHz) the diode laser is well suited for caesium D1 spectroscopy. This was verified by the measurement of the hyperfine structure of the D1 line.

SELECTION OF CITATIONS
SEARCH DETAIL
...