Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 301, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639797

ABSTRACT

Water bodies are increasingly contaminated with a diversity of organic micropollutants (OMPs). This impacts the quality of ecosystems due to their recalcitrant nature. In this study, we assessed the removal of OMPs by spent mushroom substrate (SMS) of the white button mushroom (Agaricus bisporus) and by its aqueous tea extract. Removal of acesulfame K, antipyrine, bentazon, caffeine, carbamazepine, chloridazon, clofibric acid, and N, N-diethyl-meta-toluamide (DEET) by SMS and its tea was between 10 and 90% and 0-26%, respectively, in a 7-day period. Sorption to SMS particles was between 0 and 29%, which can thus not explain the removal difference between SMS and its tea, the latter lacking these particles. Carbamazepine was removed most efficiently by both SMS and its tea. Removal of OMPs (except caffeine) by SMS tea was not affected by heat treatment. By contrast, heat-treatment of SMS reduced OMP removal to < 10% except for carbamazepine with a removal of 90%. These results indicate that OMP removal by SMS and its tea is mediated by both enzymatic and non-enzymatic activities. The presence of copper, manganese, and iron (0.03, 0.88, and 0.33 µg L-1, respectively) as well as H2O2 (1.5 µM) in SMS tea indicated that the Fenton reaction represents (part of) the non-enzymatic activity. Indeed, the in vitro reconstituted Fenton reaction removed OMPs > 50% better than the teas. From these data it is concluded that spent mushroom substrate of the white button mushroom, which is widely available as a waste-stream, can be used to purify water from OMPs.


Subject(s)
Agaricus , Ecosystem , Caffeine , Hydrogen Peroxide , Water , Tea , Carbamazepine
2.
Cell Surf ; 10: 100108, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38156043

ABSTRACT

The cell wall fulfils several functions in the biology of fungi. For instance, it provides mechanical strength, interacts with the (a)biotic environment, and acts as a molecular sieve. Recently, it was shown that proteins and ß-glucans in the cell wall of Schizophyllum commune bind Cu2+. We here show that the cell wall of this mushroom forming fungus also binds other (micro-)nutrients. Ca2+, Mg2+, Mn2+, NO3-, PO43-, and SO42- bound at levels > 1 mg per gram dry weight cell wall, while binding of BO3-, Cu2+, Zn2+ and MoO42- was lower. Sorption of Ca2+, Mn2+, Zn2+ and PO43- was promoted at alkaline pH. These compounds as well as BO33-, Cu2+, Mg2+, NO3-, and SO42- that had bound at pH 4, 6, or 8 could be released from the cell wall at pH 4 with a maximum efficiency of 46-93 %. Solid-state NMR spectroscopy showed that the metals had the same binding sites as Cu2+ when a low concentration of this ion is used. Moreover, data indicate that anions bind to the cell wall as well as to the metal ions. Together, it is shown that the cell wall of S. commune binds various (micro-)nutrients and that this binding is higher than the uptake by hyphae. The binding to the cell wall may be used as a storage mechanism or may reduce availability of these molecules to competitors or prevent toxic influx in the cytoplasm.

SELECTION OF CITATIONS
SEARCH DETAIL
...