Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Neth Heart J ; 30(12): 572-579, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35536478

ABSTRACT

BACKGROUND: We evaluated three-dimensional speckle tracking echocardiography (3DSTE) strain and cardiac magnetic resonance (CMR) with delayed contrast enhancement (DCE) for the prediction of cardiac events in left ventricular (LV) dysfunction. METHODS: CMR and 3DSTE in 75 patients with ischaemic and 38 with non-ischaemic LV dysfunction were analysed and temporally correlated to cardiac events during 41 ± 9 months of follow-up. RESULTS: Cardiac events occurred in 44 patients, more in patients with ischaemic LV dysfunction. LV ejection fraction (LVEF), global circumferential and global area strain were reduced more in patients with more cardiac events, whereas 3DSTE LV end-systolic volumes and 3DSTE LV masses were larger. However, the area under the curve using receiver-operating characteristic analysis showed modest sensitivity and specificity for all evaluated parameters. Additionally, DCE did not differ significantly between the two groups. Univariate analysis showed ischaemic aetiology of LV dysfunction, LVEF and LV mass by CMR to be predictors of cardiac events with an increased relative risk of 2.4, 1.6 and 1.5, respectively. By multivariate analysis, only myocardial ischaemia and LVEF ≤ 39% were independent predictors of events (p = 0.004 and 0.005, respectively). Subgroup analysis in ischaemic and non-ischaemic patients showed only 3DSTE LV mass in ischaemic patients to have a significant association (p = 0.033) but without an increased relative risk. CONCLUSION: LVEF calculated by 3DSTE or CMR were both good predictors of cardiac events in patients with LV dysfunction. A reduced LVEF ≤ 39% was associated with a 1.6-fold higher probability of a cardiac event. 3DSTE strain measurements and DCE-CMR did not add to the prognostic value of LVEF.

2.
Neth Heart J ; 24(10): 600-8, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27538926

ABSTRACT

BACKGROUND: We compared three-dimensional speckle tracking echocardiography (3DSTE) and its strain to cardiac magnetic resonance (CMR) with delayed contrast enhancement for left ventricular (LV) chamber quantification and transmurality of myocardial scar. Furthermore, we examined the ability of 3DSTE strain to differentiate between ischaemic and non-ischaemic LV dysfunction. METHODS: In 80 consecutive patients with ischaemic and 40 patients with non-ischaemic LV dysfunction, the correlations between LV volumes and ejection fraction were measured using 3DSTE and CMR. Global and regional 3DSTE strains and total or percentage enhanced LV mass were evaluated. RESULTS: LV end-diastolic and end-systolic volumes and ejection fraction correlated well between 3DSTE and CMR (r: 0.83, 0.88 and 0.89, respectively). However, 3DSTE significantly underestimated volumes. Correlation for LV mass was modest (r = 0.59). All 3DSTE regional strain values except for radial strain were lower in segments with versus segments without transmural enhancement. However, strain parameters could not identify the transmurality of scar. No significant difference between ischaemic and non-ischaemic LV dysfunction was observed in either global or regional 3DSTE strain except for twist, which was lower in the non-ischaemic group (4.9 ± 3.3 vs. 6.4 ± 3.2°, p = 0.03). CONCLUSION: 3DSTE LV volumes are underestimated compared with CMR, while LV ejection fraction revealed excellent accuracy. Functional impairment by 3DSTE strain does not correlate well with scar localisation or extent by CMR. 3DSTE strain could not differentiate between ischaemic and non-ischaemic LV dysfunction. Future studies will need to clarify if 3DSTE strain and CMR delayed contrast enhancement can provide incremental value to the prediction of future cardiovascular events.

4.
Int J Cardiovasc Imaging ; 28(8): 1895-904, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22302648

ABSTRACT

A novel method to assess left ventricular (LV) mechanical dyssynchrony using three-dimensional echocardiography (3DE) and semi-automated border detection was investigated, which might be superior in prediction of response to cardiac resynchronisation therapy (CRT) compared to traditional measures that rely solely on segmental time-to-contraction. Twenty-eight heart failure patients underwent real-time 3DE before CRT and at 6­12 months follow-up. Analysis of 3DE was performed using TomTec Research-Arena software featuring semi-automated endocardial border detection. The following echocardiographic parameters were calculated in a 16-segment model: areas under segmental time-volume-curves (STV); delay between contraction of the earliest and latest segment (L-E); and standard deviation of segmental time-to-contraction (SDI). Response to CRT was defined as ≥10% decrease in LV end-systolic volume at follow-up. Baseline Pre-STV had a higher sensitivity than SDI for prediction of response (94 vs 67%, respectively), with equal specificity (78%) and a higher area under receiver operator characteristic curve. In contrast, L-E had a sensitivity of 83% and a specificity of 56%. Using 3DE, methods that combine segmental time-to-contraction with segmental contractility might improve LV dyssynchrony assessment compared to traditional methods based on segmental time-to-contraction alone. Pre-STV might be a better predictor of response to CRT than SDI.


Subject(s)
Cardiac Resynchronization Therapy , Echocardiography, Three-Dimensional , Heart Failure/diagnostic imaging , Heart Failure/therapy , Image Interpretation, Computer-Assisted , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/therapy , Ventricular Function, Left , Aged , Automation , Female , Heart Failure/physiopathology , Humans , Male , Middle Aged , Myocardial Contraction , Predictive Value of Tests , Sensitivity and Specificity , Software , Stroke Volume , Time Factors , Treatment Outcome , Ventricular Dysfunction, Left/physiopathology
5.
Neth Heart J ; 19(10): 423-31, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21584798

ABSTRACT

One of the earliest applications of clinical echocardiography is evaluation of left ventricular (LV) function and size. Accurate, reproducible and quantitative evaluation of LV function and size is vital for diagnosis, treatment and prediction of prognosis of heart disease. Early three-dimensional (3D) echocardiographic techniques showed better reproducibility than two-dimensional (2D) echocardiography and narrower limits of agreement for assessment of LV function and size in comparison to reference methods, mostly cardiac magnetic resonance (CMR) imaging, but acquisition methods were cumbersome and a lack of user-friendly analysis software initially precluded widespread use. Through the advent of matrix transducers enabling real-time three-dimensional echocardiography (3DE) and improvements in analysis software featuring semi-automated volumetric analysis, 3D echocardiography evolved into a simple and fast imaging modality for everyday clinical use. 3DE provides the possibility to evaluate the entire LV in three spatial dimensions during the complete cardiac cycle, offering a more accurate and complete quantitative evaluation the LV. Improved efficiency in acquisition and analysis may provide clinicians with important diagnostic information within minutes. The current article reviews the methodology and application of 3DE for quantitative evaluation of the LV, provides the scientific evidence for its current clinical use, and discusses its current limitations and potential future directions.

6.
Eur J Echocardiogr ; 11(5): 446-50, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20139441

ABSTRACT

AIMS: To evaluate the impact of high altitude on cardiac morphology and function in patients with coronary artery disease (CAD) and healthy controls. METHODS AND RESULTS: Eight patients with a history of acute myocardial infarction [53 +/- 8 years, left ventricular (LV) ejection fraction 54 +/- 6%] and a low risk score were compared with seven healthy controls (41 +/- 16 years) during the Dutch Heart Expedition 2007 at the Aconcagua (6960 m) in Argentina. An exercise test and echocardiography were performed at sea level and at base camp (4200 m). In the apical four-chamber view, right ventricular (RV) diameter, tricuspid annular plane systolic excursion (TAPSE), early transmitral inflow peak velocity (E), atrial transmitral inflow peak velocity (A), and peak tissue velocity during early diastole (E') were obtained. Changes in global LV function and wall motion score index (WMSI) were used as markers of ischaemia. There were no significant differences in individual global LV function and WMSI at high altitude compared with sea level in both groups. A significant increase in RV diameter was observed in the patient group at 4200 m compared with sea level and a trend towards the same result in the control group. A decrease in TAPSE was observed. Measurements of the E' showed a significant decrease in the LV septum and lateral wall at high altitude compared with sea level in both groups. CONCLUSION: Symptoms and echocardiographic signs of myocardial ischaemia were absent in low-risk patients with a history of CAD during and after exercise up to an altitude of 4200 m. Patients and healthy controls showed comparable changes at high altitude compared with sea level with an increase in RV diameter, a decrease in TAPSE, and decreased E' as early signs of pulmonary hypertension and LV diastolic dysfunction. As these alterations are most likely physiological adaptation to high altitude, the results seem to affirm current guidelines. The safety of expanding previous recommendations to patients with low-risk CAD to an altitude ascent of 4200 m requires confirmation in a larger study with appropriately defined clinical endpoints.


Subject(s)
Acceleration , Altitude , Coronary Artery Disease/diagnostic imaging , Echocardiography, Doppler, Color , Heart Ventricles/diagnostic imaging , Myocardium/pathology , Adult , Biomarkers , Case-Control Studies , Coronary Artery Disease/pathology , Exercise Test , Female , Health Status Indicators , Heart Ventricles/pathology , Humans , Male , Middle Aged , Risk Assessment , Risk Factors , Stroke Volume , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/pathology , Ventricular Function, Left
7.
Neth Heart J ; 17(1): 18-24, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19148334

ABSTRACT

Significant advances in three-dimensional echocardiography have made this modality a powerful diagnostic tool in the cardiology clinic. It can provide accurate and reliable measurements of chamber size and function, including the quantification of left ventricular mechanical dyssynchrony to guide patient selection for cardiac resynchron-isation therapy. Furthermore, three-dimensional echocardiography offers novel views and comprehensive anatomic definition of valvular and congenital abnormalities, improving diagnosis and preoperative planning. In addition, it is extremely useful in monitoring the effectiveness of surgical or percutaneous transcatheter interventions. As its efficacy for more and more clinical applications is demonstrated, it is clear that three-dimensional echocardiography has become part of the routine clinical diagnostic armamentarium. In this article, we describe the development of three-dimensional echocardiography over the last decades, review the scientific evidence for its current clinical use and discuss potential future applications. (Neth Heart J 2009;17:18-24.).

SELECTION OF CITATIONS
SEARCH DETAIL
...