Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Biol Med ; 75 Suppl 1: S16, 2014 Oct.
Article in English | MEDLINE | ID: mdl-26461296

ABSTRACT

Stroke is the second leading cause of death with high blood pressure and female gender being the main risk factors. However, only one treatment is available and with many contraindications, which leaves more than 80% of patients untreated. Over a thousand experimental stroke treatments have remained unsuccessful in the clinic. In preclinical research, low reproducibility and publication bias have been suggested as causes of low translatability success. NADPH oxidases might be key players in stroke via their unique role as a major and/or early source of reactive oxygen species (ROS). To clarify the role of the different NOX isoforms (1, 2, 4, and 5) we analysed different KO and KI models. Previous literature claimed a role for NOX2. Using both a meta-analytical and a blinded randomised controlled trial approach, we however find that NOX2 plays only a minor role and publication bias and lack of power perturbed the published literature. We earlier showed a detrimental role of NOX4 in stroke and extend this based on cell-specific KO animals that endothelial but not vascular smooth muscle cells are the major source of NOX4 in stroke. Mice do not express the human NOX5 gene. Using a NOX5 KI model, we show that endothelial NOX5 induces hypertension and increased stroke risk, particularly in females. In human hypertension, NOX5 is upregulated, and women have a higher stroke risk. Thus NOX5 might be a missing link in this context. In conclusion, NOX4 and NOX5, but not NOX2, are promising targets for the development of new neuroprotective therapies for ischemic stroke. A priori power and sample size calculation as well as reporting of also negative data is essential with respect to preclinical validation of therapeutic targets.

SELECTION OF CITATIONS
SEARCH DETAIL
...