Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Physiol Plant ; 176(2): e14312, 2024.
Article in English | MEDLINE | ID: mdl-38651242

ABSTRACT

In plant tissue culture, callus formation serves as a crucial mechanism for regenerating entire plants, enabling the differentiation of diverse tissues. Researchers have extensively studied the influence of media composition, particularly plant growth regulators, on callus behavior. However, the impact of the physical properties of the media, a well-established factor in mammalian cell studies, has received limited attention in the context of plant tissue culture. Previous research has highlighted the significance of gelling agents in affecting callus growth and differentiation, with Agar, Phytagel, and Gelrite being the most used options. Despite their widespread use, a comprehensive comparison of their physical properties and their subsequent effects on callus behavior remains lacking. Our study provides insights into optimizing plant tissue culture media by analyzing the physical properties of gelling agents and their impact on callus induction and differentiation. We compared the phenotypes of calli grown on media composed of these different gelling agents and correlated them to the physical properties of these media. We tested water retention, examined pore size using cryo-SEM, measured the media mechanical properties, and studied diffusion characteristics. We found that the mechanical properties of the media are the only quality correlated with callus phenotype.


Subject(s)
Culture Media , Culture Media/chemistry , Gels , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Tissue Culture Techniques/methods , Agar/chemistry , Cell Differentiation/drug effects
2.
PLoS One ; 19(3): e0299810, 2024.
Article in English | MEDLINE | ID: mdl-38513160

ABSTRACT

Stomatal movement, initiated by specialized epidermal cells known as guard cells (GCs), plays a pivotal role in plant gas exchange and water use efficiency. Despite protocols existing for isolating GCs through proplasting for carrying out biochemical, physiological, and molecular studies, protocals for isolating GCs with their cell walls still intact have been lacking in the literature. In this paper, we introduce a method for the isolation of complete GCs from Vicia faba and show their membrane to remain impermeable through propidium iodide staining. This methodology enables further in-depth analyses into the cell wall composition of GCs, facilitating our understanding of structure-function relationship governing reversible actuation within cells.


Subject(s)
Fabaceae , Vicia faba , Vicia faba/metabolism , Cell Wall , Microtubules/metabolism
3.
ACS Appl Mater Interfaces ; 15(5): 7359-7370, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36701767

ABSTRACT

Herein, we report bioderived cross-linkers to create biopolymer-based hydrogels with tunable properties. Nucleosides (inosine and uridine) and ribose (pentose sugar lucking the nitrogenous base) were partially oxidized to yield inosine dialdehyde (IdA), uridine dialdehyde (UdA), and ribose dialdehyde (RdA). The dialdehydes were further used as cross-linkers with polysaccharide chitosan to form hydrogels. Depending on the cross-linker type and concentration, the hydrogels showed tunable rheological, mechanical, and liquid holding properties allowing the preparation of injectable, soft, and moldable hydrogels. Computational modeling and molecular dynamics simulations shed light on hydrogel formation and revealed that, in addition to covalent bonding, noncovalent interactions (π-π stacking, cation-π, and H-bonding) also significantly contributed to the cross-linking process. To demonstrate various application possibilities, the prepared hydrogels were used as a growth platform for plant cells, as injectable inks for layer-by-layer 3D printing applications, and as moldable hydrogels for soft lithography to replicate the microstructure of the plant. These findings suggest that the obtained tunable biocompatible hydrogels have the potential to be good candidates for various biotechnological applications.


Subject(s)
Chitosan , Nucleosides , Biocompatible Materials/chemistry , Hydrogels/chemistry , Ribose , Chitosan/chemistry , Uridine
4.
Front Plant Sci ; 13: 1023502, 2022.
Article in English | MEDLINE | ID: mdl-36388570

ABSTRACT

For some pathogenic fungi, sensing surface topography is part of their infection strategy. Their directional growth and transformation to a new developmental stage is influenced by contact with topographic features, which is referred to as thigmo-response, the exact functionality of which is not fully understood. Research on thigmo-responses is often performed on biomimetically patterned surfaces (BPS). Polydimethylsiloxane (PDMS) is especially suitable for fabrication of BPS. Here, we used synthetic BPS surfaces, mimicking tomato leaf surface, made from PDMS with the pathogenic fungus Botrytis cinerea to study the influence of structural features of the leaf surface on the fungus behavior. As a control, a PDMS surface without microstructure was fabricated to maintain the same chemical properties. Pre-penetration processes of B. cinerea, including the distribution of conidia on the surface, germination, and germ tube growth were observed on both leaf-patterned and flat PDMS. Microstructure affected the location of immediate attachment of conidia. Additionally, the microstructure of the plant host stimulated the development of germ tube in B. cinerea, at a higher rate than that observed on flat surface, suggesting that microstructure plays a role in fungus attachment and development.

5.
Materials (Basel) ; 15(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35407860

ABSTRACT

Modification of surface structure for the promotion of food safety and health protection is a technology of interest among many industries. With this study, we aimed specifically to develop a tenable solution for the fabrication of self-cleaning biomimetic surface structures for agricultural applications such as post-harvest packing materials and greenhouse cover screens. Phytopathogenic fungi such as Botrytiscinerea are a major concern for agricultural systems. These molds are spread by airborne conidia that contaminate surfaces and infect plants and fresh produce, causing significant losses. The research examined the adhesive role of microstructures of natural and synthetic surfaces and assessed the feasibility of structured biomimetic surfaces to easily wash off fungal conidia. Soft lithography was used to create polydimethylsiloxane (PDMS) replications of Solanum lycopersicum (tomato) and Colocasia esculenta (elephant ear) leaves. Conidia of B. cinerea were applied to natural surfaces for a washing procedure and the ratios between applied and remaining conidia were compared using microscopy imaging. The obtained results confirmed the hypothesis that the dust-repellent C. esculenta leaves have a higher conidia-repellency compared to tomato leaves which are known for their high sensitivities to phytopathogenic molds. This study found that microstructure replication does not mimic conidia repellency found in nature and that conidia repellency is affected by a mix of parameters, including microstructure and hydrophobicity. To examine the effect of hydrophobicity, the study included measurements and analyses of apparent contact angles of natural and synthetic surfaces including activated (hydrophilic) surfaces. No correlation was found between the surface apparent contact angle and conidia repellency ability, demonstrating variation in washing capability correlated to microstructure and hydrophobicity. It was also found that a microscale sub-surface (tomato trichromes) had a high conidia-repelling capability, demonstrating an important role of non-superhydrophobic microstructures.

6.
ISME J ; 16(1): 122-137, 2022 01.
Article in English | MEDLINE | ID: mdl-34272494

ABSTRACT

The plant hormone cytokinin (CK) is an important developmental regulator, promoting morphogenesis and delaying differentiation and senescence. From developmental processes, to growth, to stress tolerance, CKs are central in plant life. CKs are also known to mediate plant immunity and disease resistance, and several classes of microbes can also produce CKs, affecting the interaction with their plant hosts. While host species and genotype can be a driving force in shaping the plant microbiome, how plant developmental hormones such as CK can shape the microbiome is largely uninvestigated. Here, we examined the relationship between CK and the phyllosphere microbiome, finding that CK acts as a selective force in microbiome assembly, increasing richness, and promoting the presence of Firmicutes. CK-mediated immunity was found to partially depend on the microbial community, and bacilli isolated from previously described CK-rich plant genotypes, which overexpress a CK biosynthesis gene or have increased CK sensitivity, induced plant immunity, and promoted disease resistance. Using a biomimetic system, we investigated the relationship between the leaf microstructure, which is differentially patterned upon changes in CK content or signaling, and the growth of different phyllosphere microbes. We found that leaf structures derived from CK-rich plant genotypes support bacilli in the biomimetic system. CK was able to promote the growth, swarming, and biofilm formation of immunity inducing bacillus isolates in vitro. Overall, our results indicate that host genotype and hormonal profiles can act as a strong selective force in microbiome assembly, underlying differential immunity profiles, and pathogen resistance as a result.


Subject(s)
Cytokinins , Microbiota , Cues , Cytokinins/pharmacology , Disease Resistance , Humans , Microbiota/genetics , Plant Growth Regulators
7.
Hortic Res ; 8(1): 13, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33384417

ABSTRACT

Soft rot disease caused by Pectobacterium spp. is responsible for severe agricultural losses in potato, vegetables, and ornamentals. The genus Zantedeschia includes two botanical groups of tuberous ornamental flowers that are highly susceptible to the disease. Previous studies revealed that Z. aethiopica, a member of the section Zantedeschia, is significantly more resistant to Pectobacterium spp. than members of the same genus that belong to the section Aestivae. During early infection, we found different patterns of bacterial colonization on leaves of hosts belonging to the different sections. Similar patterns of bacterial colonization were observed on polydimethylsiloxane (PDMS) artificial inert replicas of leaf surfaces. The replicas confirmed the physical effect of leaf texture, in addition to a biochemical plant-bacterium interaction. The differential patterns may be associated with the greater roughness of the abaxial leaf surfaces of Aestivae group that have evolutionarily adapted to mountainous environments, as compared to Zantedeschia group species that have adapted to warm, marshy environments. Transverse leaf sections also revealed compact aerenchyma and reduced the total volume of leaf tissue air spaces in Aestivae members. Finally, an analysis of defense marker genes revealed differential expression patterns in response to infection, with significantly higher levels of lipoxygenase 2 (lox2) and phenylalanine ammonia lyase (pal) observed in the more resistant Z. aethiopica, suggesting greater activation of induced systemic resistance (ISR) mechanisms in this group. The use of Zantedeschia as a model plant sheds light on how natural ecological adaptations may underlay resistance to bacterial soft rot in cultivated agricultural environments.

8.
Int J Mol Sci ; 21(18)2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32916923

ABSTRACT

A variety of methods to detect cellulase secretion by microorganisms has been developed over the years, none of which enables the real-time visualization of cellulase activity on a surface. This visualization is critical to study the interaction between soil-borne cellulase-secreting microorganisms and the surface of plant roots and specifically, the effect of surface features on this interaction. Here, we modified the known carboxymethyl cellulase (CMC) hydrolysis visualization method to enable the real-time tracking of cellulase activity of microorganisms on a surface. A surface was formed using pure CMC with acridine orange dye incorporated in it. The dye disassociated from the film when hydrolysis occurred, forming a halo surrounding the point of hydrolysis. This enabled real-time visualization, since the common need for post hydrolysis dyeing was negated. Using root-knot nematode (RKN) as a model organism that penetrates plant roots, we showed that it was possible to follow microorganism cellulase secretion on the surface. Furthermore, the addition of natural additives was also shown to be an option and resulted in an increased RKN response. This method will be implemented in the future, investigating different microorganisms on a root surface microstructure replica, which can open a new avenue of research in the field of plant root-microorganism interactions.


Subject(s)
Acridine Orange , Cellulase/analysis , Soil Microbiology , Animals , Carboxymethylcellulose Sodium/chemistry , Cellulase/metabolism , Hydrolysis , Plant Roots/parasitology , Tylenchoidea/enzymology
9.
J Vis Exp ; (162)2020 08 05.
Article in English | MEDLINE | ID: mdl-32831308

ABSTRACT

Biomimetics is the use of chemistry and material sciences to mimic biological systems, specifically biological structures, to better humankind. Recently, biomimetic surfaces mimicking the microstructure of leaf surface, were used to study the effects of leaf microstructure on leaf-environment interactions. However, no such tool exists for roots. We developed a tool allowing the synthetic mimicry of the root surface microstructure into an artificial surface. We relied on the soft lithography method, known for leaf surface microstructure replication, using a two-step process. The first step is the more challenging one as it involves the biological tissue. Here, we used a different polymer and curing strategy, relying on the strong, rigid, polyurethane, cured by UV for the root molding. This allowed us to achieve a reliable negative image of the root surface microstructure including the delicate, challenging features such as root hairs. We then used this negative image as a template to achieve the root surface microstructure replication using both the well-established polydimethyl siloxane (PDMS) as well as a cellulose derivative, ethyl cellulose, which represents a closer mimic of the root and which can also be degraded by cellulase enzymes secreted by microorganisms. This newly formed platform can be used to study the microstructural effects of the surface in root-microorganism interactions in a similar manner to what has previously been shown in leaves. Additionally, the system enables us to track the microorganism's locations, relative to surface features, and in the future its activity, in the form of cellulase secretion.


Subject(s)
Biomimetics/methods , Plant Roots/chemistry
10.
ACS Omega ; 3(10): 12841-12850, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-31458008

ABSTRACT

"Side chain engineering" research has yielded many promising and beneficial results, with applications in various fields. However, this research did not receive sufficient focus when nature-sourced polymers are concerned. In this study, we have performed side chain engineering on chitosan, a nature-sourced polysaccharide, by coupling it with a number of aliphatic aldehydes of varying chain lengths. The side chains' length and the pursuing effect on the modified products' properties were studied in great detail. In terms of coupling yields, it was found that some substituents have displayed more favorable results than others by a factor of over 35 times. When studying the modified polymers' physical and mechanical properties, some of them were found to exhibit more rigid mechanical properties by a factor of 3.5 times than others. The effect was also expressed through self-assembly concentrations and encapsulation capabilities of the modified polymers. Remarkably, the combined experimental and calculated kinetic studies showed the results do not necessarily follow a linear progression relating to substituent chain length, but rather a parabolic pattern with a specific extremum point. This study has assisted in shedding light on the inspected phenomenon, explaining that not only steric and electronic factors but also interfacial solubility related factors govern the coupling reaction and the resulting modified polymers' properties. As chemical protocols in various academic, clinical, and industrial studies around the world slowly shift their norms toward finding safer ways for the production of novel materials and technologies, nature-sourced polymers hold great promise as virtually inexhaustible raw materials. The perfection of their chemical modification is therefore relevant now more than ever, with far-reaching and diverse applicative prospects.

11.
ACS Appl Mater Interfaces ; 9(22): 18531-18539, 2017 Jun 07.
Article in English | MEDLINE | ID: mdl-28485146

ABSTRACT

Bacteria form interface-associated communities called biofilms, often comprising multiple species. Biofilms can be detrimental or beneficial in medical, industrial, and technological settings, and their stability and function are determined by interspecies communication via specific chemical signaling or metabolite exchange. The deterministic control of biofilm development, behavior, and properties remains an unmet challenge, limiting our ability to inhibit the formation of detrimental biofilms in biomedical settings and promote the growth of beneficial biofilms in biotechnology applications. Here, we describe the development of growth surfaces that promote the growth of commensal Escherichia coli instead of the opportunistic pathogen Pseudomonas aeruginosa. Periodically patterned growth surfaces induced robust morphological changes in surface-associated E. coli biofilms and influenced the antibiotic susceptibilities of E. coli and P. aeruginosa biofilms. Changes in the biofilm architecture resulted in the accumulation of a metabolite, indole, which controls the competition dynamics between the two species. Our results show that the surface on which a biofilm grows has important implications for species colonization, growth, and persistence when exposed to antibiotics.


Subject(s)
Biofilms , Anti-Bacterial Agents , Escherichia coli , Pseudomonas aeruginosa
12.
Ecol Evol ; 5(13): 2572-83, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26257871

ABSTRACT

The evolution of sex is one of the greatest mysteries in evolutionary biology. An even greater mystery is the evolution of obligate sex, particularly when competing with facultative sex and not with complete asexuality. Here, we develop a stochastic simulation of an obligate allele invading a facultative population, where males are subject to sexual selection. We identify a range of parameters where sexual selection can contribute to the evolution of obligate sex: Especially when the cost of sex is low, mutation rate is high, and the facultative individuals do not reproduce sexually very often. The advantage of obligate sex becomes larger in the absence of recombination. Surprisingly, obligate sex can take over even when the population has a lower mean fitness as a result. We show that this is due to the high success of obligate males that can compensate the cost of sex.

13.
ACS Appl Mater Interfaces ; 6(4): 2830-5, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-24437474

ABSTRACT

We report a technique to coat polymers onto 3D surfaces distinct from traditional spray, spin, or dip coating. In our technique, the surface of a template structure composed of poly(lactic acid) swells and entraps a soluble polymer precursor. Once entrapped, the precursor is cured, resulting in a thin, conformal membrane. The thickness of each coating depends on the coating solution composition, residence time, and template size. Thicknesses ranged from 400 nm to 4 µm within the experimental conditions we explored. The coating method was compatible with a range of polymers. Complicated 3D structures and microstructures of 10 µm thickness and separation were coated using this technique. The templates can also be selectively removed, leaving behind a hollow membrane structure in the shape of the original printed, extruded, or microporous template structures. This technique may be useful in applications that benefit from three-dimensional membrane topologies, including catalysis, separations, and potentially tissue engineering.


Subject(s)
Coated Materials, Biocompatible , Dimethylpolysiloxanes/chemistry , Lactic Acid/chemistry , Polymers/chemistry , Molecular Structure , Polyesters
14.
Mol Biol Cell ; 22(7): 911-20, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21289098

ABSTRACT

Subunit composition and architectural structure of the 26S proteasome lid is strictly conserved between all eukaryotes. This eight-subunit complex bears high similarity to the eukaryotic translation initiation factor 3 and to the COP9 signalosome (CSN), which together define the proteasome CSN/COP9/initiation factor (PCI) troika. In some unicellular eukaryotes, the latter two complexes lack key subunits, encouraging questions about the conservation of their structural design. Here we demonstrate that, in Saccharomyces cerevisiae, Rpn5 plays dual roles by stabilizing proteasome and CSN structures independently. Proteasome and CSN complexes are easily dissected, with Rpn5 the only subunit in common. Together with Rpn5, we identified a total of six bona fide subunits at roughly stoichiometric ratios in isolated, affinity-purified CSN. Moreover, the copy of Rpn5 associated with the CSN is required for enzymatic hydrolysis of Rub1/Nedd8 conjugated to cullins. We propose that multitasking by a single subunit, Rpn5 in this case, allows it to function in different complexes simultaneously. These observations demonstrate that functional substitution of subunits by paralogues is feasible, implying that the canonical composition of the three PCI complexes in S. cerevisiae is more robust than hitherto appreciated.


Subject(s)
Multiprotein Complexes/metabolism , Peptide Hydrolases/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Subunits/metabolism , Saccharomyces cerevisiae Proteins/metabolism , COP9 Signalosome Complex , Cullin Proteins/genetics , Cullin Proteins/metabolism , Molecular Weight , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Peptide Hydrolases/chemistry , Peptide Hydrolases/genetics , Phenotype , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/genetics , Protein Subunits/chemistry , Protein Subunits/genetics , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
15.
Theory Biosci ; 128(4): 249-85, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19902285

ABSTRACT

This article develops mathematical models describing the evolutionary dynamics of both asexually and sexually reproducing populations of diploid unicellular organisms. The asexual and sexual life cycles are based on the asexual and sexual life cycles in Saccharomyces cerevisiae, Baker's yeast, which normally reproduces by asexual budding, but switches to sexual reproduction when stressed. The mathematical models consider three reproduction pathways: (1) Asexual reproduction, (2) self-fertilization, and (3) sexual reproduction. We also consider two forms of genome organization. In the first case, we assume that the genome consists of two multi-gene chromosomes, whereas in the second case, we consider the opposite extreme and assume that each gene defines a separate chromosome, which we call the multi-chromosome genome. These two cases are considered to explore the role that recombination has on the mutation-selection balance and the selective advantage of the various reproduction strategies. We assume that the purpose of diploidy is to provide redundancy, so that damage to a gene may be repaired using the other, presumably undamaged copy (a process known as homologous recombination repair). As a result, we assume that the fitness of the organism only depends on the number of homologous gene pairs that contain at least one functional copy of a given gene. If the organism has at least one functional copy of every gene in the genome, we assume a fitness of 1. In general, if the organism has l homologous pairs that lack a functional copy of the given gene, then the fitness of the organism is kappa(l). The kappa(l) are assumed to be monotonically decreasing, so that kappa(0) = 1 > kappa(1) > kappa(2) > cdots, three dots, centered > kappa(infinity) = 0. For nearly all of the reproduction strategies we consider, we find, in the limit of large N, that the mean fitness at mutation-selection balance is max{2e(-mu) - 1,0} where N is the number of genes in the haploid set of the genome, epsilon is the probability that a given DNA template strand of a given gene produces a mutated daughter during replication, and mu = Nepsilon. The only exception is the sexual reproduction pathway for the multi-chromosomed genome. Assuming a multiplicative fitness landscape where kappa(l) = alpha(l) for alpha in (0, 1), this strategy is found to have a mean fitness that exceeds the mean fitness of all the other strategies. Furthermore, while other reproduction strategies experience a total loss of viability due to the steady accumulation of deleterious mutations once mu exceeds [Formula: see text] no such transition occurs in the sexual pathway. Indeed, in the limit as alpha --> 1 for the multiplicative landscape, we can show that the mean fitness for the sexual pathway with the multi-chromosomed genome converges to e(-2mu), which is always positive. We explicitly allow for mitotic recombination in this study, which, in contrast to previous studies using different models, does not have any advantage over other asexual reproduction strategies. The results of this article provide a basis for understanding the selective advantage of the specific meiotic pathway that is employed by sexually reproducing organisms. The results of this article also suggest an explanation for why unicellular organisms such as Saccharomyces cerevisiae (Baker's yeast) switch to a sexual mode of reproduction when stressed. While the results of this article are based on modeling mutation-propagation in unicellular organisms, they nevertheless suggest that, in more complex organisms with significantly larger genomes, sex is necessary to prevent the loss of viability of a population due to genetic drift. Finally, and perhaps most importantly, the results of this article demonstrate a selective advantage for sexual reproduction with fewer and much less restrictive assumptions than those of previous studies.


Subject(s)
Biological Evolution , Diploidy , Models, Genetic , Selection, Genetic/genetics , Algorithms , Chromosomes/genetics , Computer Simulation , Genes/genetics , Genetic Drift , Genetic Fitness/genetics , Genome/genetics , Germ-Line Mutation/genetics , Haploidy , Inbreeding , Recombination, Genetic/genetics , Reproduction/genetics , Reproduction, Asexual/genetics , Saccharomyces cerevisiae/genetics , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...