Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 5177, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36056025

ABSTRACT

The soil carbon (C) saturation concept suggests an upper limit to the storage of soil organic carbon (SOC). It is set by the mechanisms that protect soil organic matter from mineralization. Biochar has the capacity to protect new C, including rhizodeposits and microbial necromass. However, the decadal-scale mechanisms by which biochar influences the molecular diversity, spatial heterogeneity, and temporal changes in SOC persistence, remain unresolved. Here we show that the soil C storage ceiling of a Ferralsol under subtropical pasture was raised by a second application of Eucalyptus saligna biochar 8.2 years after the first application-the first application raised the soil C storage ceiling by 9.3 Mg new C ha-1 and the second application raised this by another 2.3 Mg new C ha-1. Linking direct visual evidence from one-, two-, and three-dimensional analyses with SOC quantification, we found high spatial heterogeneity of C functional groups that resulted in the retention of rhizodeposits and microbial necromass in microaggregates (53-250 µm) and the mineral fraction (<53 µm). Microbial C-use efficiency was concomitantly increased by lowering specific enzyme activities, contributing to the decreased mineralization of native SOC by 18%. We suggest that the SOC ceiling can be lifted using biochar in (sub)tropical grasslands globally.


Subject(s)
Carbon , Soil , Carbon Sequestration , Charcoal/chemistry , Soil/chemistry , Soil Microbiology
2.
J Appl Microbiol ; 133(3): 1479-1495, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35665577

ABSTRACT

AIM: Low-molecular-weight organic substances (LMWOSs) are at the nexus between micro-organisms, plant roots, detritus, and the soil mineral matrix. The nominal oxidation state of carbon (NOSC) has been suggested as a potential parameter for modelling microbial uptake rates of LMWOSs and the efficiency of carbon incorporation into new biomass. METHODS AND RESULTS: In this study, we assessed the role of compound class and oxidation state on uptake kinetics and substrate-specific carbon use efficiency (SUE) during the growth of three model soil micro-organisms, a fungal isolate (Penicillium spinulosum) and two bacterial isolates (Paraburkholderia solitsugae, and Ralstonia pickettii). Isolates were chosen that spanned a growth rate gradient (0.046-0.316 h-1 ) in media containing 34 common LMWOSs at realistically low initial concentrations (25 µM each). Clustered, co-utilization of LMWOSs occurred for all three organisms. Potential trends (p < 0.05) for early utilization of more oxidized substrates were present for the two bacterial isolates (P. solitsugae and R. pickettii), but high variability (R2 < 0.15) and a small effect of NOSC indicate these relationships are not useful for prediction. The SUEs of selected substrates ranged from 0.16 to 0.99 and there was no observed relationship between NOSC and SUE. CONCLUSION: Our results do not provide compelling population-level support for NOSC as a predictive tool for either uptake kinetics or the efficiency of use of LMWOS in soil solution. SIGNIFICANCE AND IMPACT OF THE STUDY: Metabolic strategies of organisms are likely more important than chemical identity in determining LMWOS cycling in soils. Previous community-level observations may be biased towards fast-responding bacterial community members.


Subject(s)
Burkholderiaceae , Soil , Biomass , Carbon/metabolism , Soil/chemistry , Soil Microbiology
3.
Aquat Toxicol ; 248: 106179, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35576718

ABSTRACT

Copper (Cu) is one of the most harmful contaminants in fresh-water systems. Fish larvae such as sacfry are particularly vulnerable to metals such as copper (Cu) due to a less-developed excretory organ system and permeable skin that can absorb metals directly from the water. However, the sublethal effects of metals on this life stage are not well understood. This study assessed the sublethal toxicity of Cu on purple-spotted gudgeon sacfry (PSG, Mogurnda adspersa). For this purpose, 96 h Cu toxicity bioassays were performed and toxic effects of Cu on PSG were measured at different levels of biological organization, from the individual (loss of equilibrium, wet weight), to tissue (chemical changes in retinal tissue composition) and molecular responses (whole body amino acid (AA) profiles). The EC10 and EC50 (ECx: effect concentration that affected X% of test organisms) were found to be 12 (9 - 15) µg Cu L-1 and 22 (19 - 24) µg Cu L-1, respectively. Copper stress caused a decrease in total amino acid content and changed the AA profile of PSG compared to the controls. Proton-induced X-ray emission (PIXE) mapping techniques showed accumulation of Cu in the retinal tissues disturbing the distribution of other elements such as zinc, sulfur, phosphorus and potassium. Fourier-transform infrared (FTIR) microspectroscopy of control and Cu treated eye tissues revealed a change in protein secondary structure in retinal tissues in response to Cu accumulation, as well as decreased levels of the molecular retinal, consistent with the degradation of rhodopsin, a key protein in the visual sensory system. This is the first study to demonstrate the multi-level responses of PSG arising from exposure to environmentally realistic Cu concentrations and suggests that AA profiling can serve as a useful tool to assess the impacts of metals on fresh-water organisms.


Subject(s)
Perciformes , Water Pollutants, Chemical , Amino Acids , Animals , Copper/metabolism , Perciformes/metabolism , Water , Water Pollutants, Chemical/toxicity , Zinc/toxicity
4.
J Synchrotron Radiat ; 28(Pt 5): 1616-1619, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34475308

ABSTRACT

The Infrared Microspectroscopy Beamline at the Australian Synchrotron is equipped with a Fourier transform infrared (FTIR) spectrometer, which is coupled with an infrared (IR) microscope and a choice of two detectors: a single-point narrow-band mercury cadmium telluride (MCT) detector and a 64 × 64 multi-pixel focal plane array (FPA) imaging detector. A scanning-based point-by-point mapping method is commonly used with a tightly focused synchrotron IR beam at the sample plane, using an MCT detector and a matching 36× IR reflecting objective and condenser (NA = 0.5), which is time consuming. In this study, the beam size at the sample plane was increased using a 15× objective and the spatio-spectral aberrations were investigated. A correlation-based semi-synthetic computational optical approach was applied to assess the possibilities of exploiting the aberrations to perform rapid imaging rather than a mapping approach.

5.
Adv Sci (Weinh) ; 8(19): e2101902, 2021 10.
Article in English | MEDLINE | ID: mdl-34338438

ABSTRACT

Analysis of the epicuticular wax layer on the surface of plant leaves can provide a unique window into plant physiology and responses to environmental stimuli. Well-established analytical methodologies can quantify epicuticular wax composition, yet few methods are capable of imaging wax distribution in situ or in vivo. Here, the first report of Fourier transform infrared (FTIR) reflectance spectroscopic imaging as a non-destructive, in situ, method to investigate variation in epicuticular wax distribution at 25 µm spatial resolution is presented. The authors demonstrate in vivo imaging of alterations in epicuticular waxes during leaf development and in situ imaging during plant disease or exposure to environmental stressors. It is envisaged that this new analytical capability will enable in vivo studies of plants to provide insights into how the physiology of plants and crops respond to environmental stresses such as disease, soil contamination, drought, soil acidity, and climate change.


Subject(s)
Plant Diseases , Plant Epidermis/chemistry , Plant Physiological Phenomena , Stress, Physiological/physiology , Waxes/chemistry , Microscopy, Electron, Scanning , Plant Leaves/chemistry
6.
J Agric Food Chem ; 69(7): 2295-2305, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33305954

ABSTRACT

Biological recycling of inorganic phosphorus (Pi) from organic phosphorus (Po) compounds by phosphatase-type enzymes, including phytases, is an important contributor to the pool of bioavailable P to plants and microorganisms. However, studies of mixed-substrate reactions with these enzymes are lacking. Here, we explore the reactivity of a phytase extract from the fungus Aspergillus niger toward a heterogeneous mixture containing, in addition to phytate, different structures of environmentally relevant Po compounds such as ribonucleotides and sugar phosphates. Using a high-resolution liquid chromatography-mass spectrometry method to monitor simultaneously the parent Po compounds and their by-products, we captured sequential substrate-specific evolution of Pi from the mixture, with faster hydrolysis of multiphosphorylated compounds (phytate, diphosphorylated sugars, and di- and tri-phosphorylated ribonucleotides) than hydrolysis of monophosphorylated compounds (monophosphorylated sugars and monophosphorylated ribonucleotides). The interaction mechanisms and energies revealed by molecular docking simulations of each Po compound within the enzyme's active site explained the substrate hierarchy observed experimentally. Specifically, the favorable orientation for binding of the negatively charged phosphate moieties with respect to the positive potential surface of the active site was important. Collectively, our findings provide mechanistic insights about the broad but hierarchical role of phytase-type enzymes in Pi recycling from the heterogeneous assembly of Po compounds in agricultural soils or wastes.


Subject(s)
6-Phytase , Aspergillus niger , Molecular Docking Simulation , Phosphorus , Phytic Acid
7.
Appl Environ Microbiol ; 86(24)2020 11 24.
Article in English | MEDLINE | ID: mdl-33008817

ABSTRACT

We used time-resolved metabolic footprinting, an important technical approach used to monitor changes in extracellular compound concentrations during microbial growth, to study the order of substrate utilization (i.e., substrate preferences) and kinetics of a fast-growing soil isolate, Paraburkholderia sp. strain 1N. The growth of Paraburkholderia sp. 1N was monitored under aerobic conditions in a soil-extracted solubilized organic matter medium, representing a realistic diversity of available substrates and gradient of initial concentrations. We combined multiple analytical approaches to track over 150 compounds in the medium and complemented this with bulk carbon and nitrogen measurements, allowing estimates of carbon use efficiency throughout the growth curve. Targeted methods allowed the quantification of common low-molecular-weight substrates: glucose, 20 amino acids, and 9 organic acids. All targeted compounds were depleted from the medium, and depletion followed a sigmoidal curve where sufficient data were available. Substrates were utilized in at least three distinct temporal clusters as Paraburkholderia sp. 1N produced biomass at a cumulative carbon use efficiency of 0.43. The two substrates with highest initial concentrations, glucose and valine, exhibited longer usage windows, at higher biomass-normalized rates, and later in the growth curve. Contrary to hypotheses based on previous studies, we found no clear relationship between substrate nominal oxidation state of carbon (NOSC) or maximal growth rate and the order of substrate depletion. Under soil solution conditions, the growth of Paraburkholderia sp. 1N induced multiauxic substrate depletion patterns that could not be explained by the traditional paradigm of catabolite repression.IMPORTANCE Exometabolomic footprinting methods have the capability to provide time-resolved observations of the uptake and release of hundreds of compounds during microbial growth. Of particular interest is microbial phenotyping under environmentally relevant soil conditions, consisting of relatively low concentrations and modeling pulse input events. Here, we show that growth of a bacterial soil isolate, Paraburkholderia sp. 1N, on a dilute soil extract resulted in a multiauxic metabolic response, characterized by discrete temporal clusters of substrate depletion and metabolite production. Our data did not support the hypothesis that compounds with lower energy content are used preferentially, as each cluster contained compounds with a range of nominal oxidation states of carbon. These new findings with Paraburkholderia sp. 1N, which belongs to a metabolically diverse genus, provide insights on ecological strategies employed by aerobic heterotrophs competing for low-molecular-weight substrates in soil solution.


Subject(s)
Burkholderiaceae/physiology , Carbon/metabolism , Soil/chemistry , New York
8.
J Colloid Interface Sci ; 547: 171-182, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30954001

ABSTRACT

Iron (Fe) (oxyhydr)oxide minerals, which are amongst most reactive minerals in soils and sediments, are known to exhibit strong adsorption of inorganic phosphate (Pi) and organophosphate (Po) compounds. Beyond synthetic Po compounds, much still remains unknown about the reactivity of these minerals to transform naturally-occurring Po compounds to Pi, particularly with respect to solution versus surface speciation of Po hydrolysis. To investigate this reactivity with a ferrihydrite-type mineral and ribonucleotides, we employed high-resolution liquid chromatography-mass spectrometry (LC-MS), X-ray absorption near-edge structure (XANES), Fourier-transform infrared (FTIR) spectroscopy, and molecular modeling. Kinetic experiments were conducted with the mineral (1 g L-1) reacted with adenosine monophosphate, diphosphate, or triphosphate (respectively AMP, ADP, ATP; 50 µM). Analysis of solution organic species by LC-MS implied that only adsorption occurred with AMP and ADP but both adsorption and dephosphorylation of ATP were evident. Maximum adsorption capacities per gram of mineral were 40.6 ±â€¯0.8 µmol AMP, 35.7 ±â€¯1.6 µmol ADP, and 10.9 ±â€¯1.0 µmol ATP; solution dephosphorylated by-products accounted for 15% of initial ATP. Subsequent XANES analysis of the surface species revealed that 16% of adsorbed AMP and 30% of adsorbed ATP were subjected to dephosphorylation, which was not fully quantifiable from the solution measurements. Molecular simulations predicted that ADP and ATP were complexed mainly via the phosphate groups whereas AMP binding also involved multiple hydrogen bonds with the adenosine moiety; our FTIR data confirmed these binding confirmations. Our findings thus imply that specific adsorption mechanisms dictate the recycling and subsequent trapping of Pi from ribonucleotide-like biomolecules reacted with Fe (oxyhydr)oxide minerals.


Subject(s)
Ferric Compounds/chemistry , Minerals/chemistry , Phosphorus/chemistry , Ribonucleotides/chemistry , Adsorption , Kinetics , Molecular Conformation , Molecular Dynamics Simulation , Particle Size , Solutions , Surface Properties
9.
J Environ Manage ; 239: 48-56, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30884289

ABSTRACT

Atrazine and nitrate NO3-N are two agricultural pollutants that occur widely in surface and groundwater. One of the pathways by which these pollutants reach surface water is through subsurface drainage tile lines. Edge-of-field anaerobic denitrifying bioreactors apply organic substrates such as woodchips to stimulate the removal of NO3-N from the subsurface tile waters through denitrification. Here we investigated the co-removal of NO3-N and atrazine by these bioreactors. Laboratory experiments were conducted using 12-L woodchips-containing flow-through bioreactors, with and without the addition of biochar, to treat two concentrations of atrazine (20 and 50 µg L-1) and NO3-N (1.5 and 11.5 mg L-1), operated at four hydraulic retention time, HRT, (4 h, 8 h, 24 h, 72 h). Additionally, we examined the effect of aerating the bioreactors on atrazine removal. Furthermore, we tested atrazine removal by a field woodchip denitrifying bioreactor. The removal of both NO3-N and atrazine increased with increasing HRT in the laboratory bioreactors. At 4 h, the woodchip bioreactors removed 65% of NO3-N and 25% of atrazine but, at 72 h, the bioreactors eliminated all the NO3-N and 53% of atrazine. Biochar-amended bioreactors removed up to 90% of atrazine at 72-h retention time. We concluded that atrazine removal was primarily via adsorption because neither aeration nor NO3-N levels had an effect. At 4-h retention time, the field bioreactors achieved 2.5 times greater atrazine removal than the laboratory bioreactors. Our findings thus highlighted hydraulic retention time and biochar amendments as two important factors that may control the efficiency of atrazine removal by denitrifying bioreactors. In sum, laboratory and field data demonstrated that denitrifying bioreactors have the potential to decrease pesticide transport from agricultural lands to surface waters.


Subject(s)
Atrazine , Agriculture , Bioreactors , Denitrification , Nitrates
10.
Environ Sci Technol ; 48(18): 10835-42, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25157830

ABSTRACT

The redox properties of Fe(II) adsorbed onto mineral surfaces have been highly studied over recent years due to the wide range of environmental contaminants that react with this species via abiotic processes. In this work the reactivity of Fe(II) adsorbed onto hydrous ferric oxide (HFO) has been studied using ferrocene (bis-cyclopentadienyl iron(II); Fc) derivatives as electron shuttles in cyclic voltammetry (CV) experiments. The observed amplification of the ferrocene oxidation peak in CV is attributed to reaction between the electrochemically generated ferrocenium (Fc(+)) ion and adsorbed Fe(II) species in a catalytic process (EC' mechanism). pH dependence studies show that the reaction rate increases with Fe(II) adsorption and is maintained in the absence of aqueous Fe(2+), providing strong evidence that the electron transfer process involves the adsorbed species. The rate of reaction between Fc(+) and adsorbed Fe(II) increases with the redox potential of the ferrocene derivative, as expected, with bimolecular rate constants in the range 10(3)-10(5) M(-1) s(-1). The ferrocene-mediated electrochemical method described has considerable promise in the development of a technique for measuring electron-transfer rates in geochemical and environmental systems.


Subject(s)
Electrons , Ferric Compounds/chemistry , Iron/chemistry , Adsorption , Electrochemistry , Electrodes , Ferrous Compounds/chemistry , Hydrogen-Ion Concentration , Metallocenes , Oxidation-Reduction
11.
Environ Sci Technol ; 47(10): 5178-84, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23586662

ABSTRACT

Microcystins (MCs) are a group of hepatotoxins produced by cyanobacteria that have not had their functional role or the environmental factors that trigger production clearly determined. One suggestion is that microcystins are siderophores (i.e., ligands with an extremely high affinity with iron, typically with stability constants substantially greater than 10(25)). In this work, we explore proton and iron binding with microcystin-LR (MC-LR). Using UV-visible spectroscopy and a HPLC peak retention time-based method, the two acid dissociation constants associated with the carboxylic groups of MC-LR were determined to be: pKa1 = 2.17 and pKa2 = 3.96. Cyclic voltammetry provides evidence for the formation of at least two Fe(III)-MC-LR complexes, with the Fe(III) reduction peak significantly shifted to more reducing potentials in the presence of MC-LR. These complexes have been interpreted as a rapidly formed initial complex (Complex 1) and a more stable, and slower forming, Complex 2. The stability constant for Fe(III)-MC-LR (Complex 2) was estimated to be approximately 10(13) in 60% v/v MeOH/water at 0.1 M ionic strength. The electrochemical experiments provide no evidence for the formation of a complex between Fe(2+) and MC-LR. Given that most MC-LR is released only upon cell lysis, and coupled with the moderate strength of the stability constant with Fe(III) determined in this study, it appears unlikely that that MC-LR is an extracellular siderophore. If MC-LR is involved in iron regulation in cyanobacteria, it is more likely as a shuttle for iron across the cell membrane or in intracellular processes.


Subject(s)
Carboxylic Acids/chemistry , Cyanobacteria/chemistry , Iron/chemistry , Microcystins/chemistry , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Marine Toxins , Protons , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...