Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Nutr ; 55(3): 1021-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25943647

ABSTRACT

PURPOSE: Unmetabolized folic acid (UMFA) is common in serum of elderly individuals receiving folic acid (FA)-fortified foods or supplements. We studied the effect of supplementing FA or B-complex on serum concentrations of (6S)-5-methyltetrahydropteroylglutamate [(6S)-5-CH3-H4Pte] and UMFA in elderly people and explored factors associated with detectable UMFA post-supplementation. METHODS: This is a randomized single-blind non-controlled trial on 58 elderly people using daily 400 µg FA (n = 31) or 400 µg FA, 10 µg cyanocob(III)alamin and 8 mg pyridoxine (n = 27) for a median of 23 days. Main outcome includes changes in concentrations of serum (6S)-5-CH3-H4Pte and UMFA. RESULTS: Total homocysteine declined by a median of 1.6 (p = 0.074) in the FA and 1.3 µmol/L (p = 0.009) in the B-complex arms (p = 0.66 between the arms). Serum (6S)-5-CH3-H4Pte significantly (p < 0.001 vs. baseline) increased by a median of 9.2 and 6.5 nmol/L in the FA and B-complex groups, respectively (p = 0.152 between the groups). Compared to FA, B-complex reduced cystathionine and caused lower post-intervention serum UMFA, percentage of UMFA to (6S)-5-CH3-H4Pte and prevalence of UMFA ≥ 0.21 nmol/L. Higher serum cystathionine and whole-blood folate predicted higher post-intervention serum UMFA. CONCLUSIONS: FA caused higher UMFA as compared to B-complex. Pyridoxine appears to improve folate recycling. Data on serum UMFA should be interpreted in relation to other vitamins involved in folate metabolism. Serum UMFA is suggested to play a sensory role through which the cell recognizes FA available for metabolism via dihydrofolate reductase.


Subject(s)
Dietary Supplements , Folic Acid/blood , Vitamin B Complex/blood , Aged , Aged, 80 and over , Biomarkers/blood , Cystathionine/blood , Dose-Response Relationship, Drug , Female , Folic Acid/administration & dosage , Humans , Male , Sample Size , Single-Blind Method , Treatment Outcome , Vitamin B Complex/administration & dosage
2.
Clin Chem Lab Med ; 51(3): 649-55, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23314556

ABSTRACT

BACKGROUND: Disturbed DNA methylation is causally related to chronic diseases like cancer and atherosclerosis. B vitamins are cofactors required for methyl group synthesis and may therefore affect DNA methylation. Vitamin D has epigenetic effects. We tested if B and D vitamin supplementation has an effect on genomic long interspersed nuclear element-1 (LINE-1) methylation and the metabolites S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH). METHODS: Fifty subjects (median age 68.0 years) were supplemented with a daily oral dose of B vitamins (500 µg folic acid, 500 µg vitamin B12 and 50 mg vitamin B6), 1200 IU vitamin D and 456 mg calcium. Fasting blood samples were collected before and after 1 year of supplementation. LINE-1 methylation was determined in genomic DNA from blood cells as a surrogate for whole genome methylation. In addition, SAM, SAH and total homocysteine (tHcy) were measured in plasma samples. RESULTS: Plasma homocysteine decreased significantly after supplementation (12.8 vs. 9.1 µmol/L; p<0.05), whereas SAM, SAH, the SAM/SAH ratio and LINE-1 methylation did not change significantly. LINE-1 methylation was not significantly correlated with SAH, homocysteine or B vitamins. CONCLUSIONS: Long-term vitamin B supplementation had no effect on LINE-1 methylation in blood cells nor on plasma levels of SAM and SAH. Vitamin B and D supplementation seems to have no effect on DNA methylation, especially in cases where no severe deficiency exists.


Subject(s)
Cholecalciferol/pharmacology , DNA Methylation/drug effects , Long Interspersed Nucleotide Elements/genetics , Vitamin B Complex/pharmacology , Aged , Aged, 80 and over , Calcium Carbonate/pharmacology , Dietary Supplements , Drug Administration Schedule , Female , Homocysteine/blood , Humans , Male , Middle Aged , S-Adenosylhomocysteine/blood , S-Adenosylmethionine/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...