Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Macro Lett ; 13(1): 28-33, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38100721

ABSTRACT

We report a rapid postgrafting reaction to prepare alkyl ammonium functionalized polycarbazoles from a commercially available monomer. This novel synthetic approach provides benefit to preparing the high molecular weight quaternized polycarbazoles within 1 h of Friedel-Crafts polycondensation, avoiding the synthesis and purification step to prepare a functionalized monomer. The postgrafting reaction produces hexyl alkyl ammonium functionalized polycarbazole with 100% grafting degree. However, the postgrafting reaction produced only 60% grafting with propyl alkyl ammonium due to the competitive elimination reaction because of the higher acidity of ß-hydrogen in the propyl alkyl group resulting from the proximity of the bromide and ammonium groups. The hexyl alkyl ammonium functionalized polycarbazole has a high hydroxide conductivity of 103 mS cm-1 at 80 °C and showed excellent alkaline stability with less than 3% loss of ion group after 1 M NaOH treatment at 80 °C for 500 h. This study highlights that the postgrafting reaction provides a pathway for the scale-up synthesis of quaternized aryl ether-free polyaromatics.

2.
ACS Macro Lett ; 12(12): 1648-1653, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37987786

ABSTRACT

Colloidal Nafion morphology plays a critical role in determining the performance of fuel cells and electrolyzers. While small-angle neutron scattering (SANS) studies previously described Nafion in liquid media as dispersed cylinders, the analysis remains nonunique with multiple possible morphological descriptions of the data. Here, using SANS and all-atomistic molecular dynamics, we confirm that Nafion morphology in liquid media differs substantially depending on dispersing agent and dispersion method. H+ Nafion dispersed in N-methyl pyrrolidone forms swollen cluster particles with physically cross-linked ionic groups. Scattering profiles from dispersed Nafion membrane have a large structure factor feature not observed for redispersed Nafion D-521. H+ Nafion dispersed in water has a highly elongated cylindrical morphology (radius = 10 ± 1.5 Å, height = 358 ± 4.7 Å) with fully dissociated and solvated sulfonic acid groups on the particle wall. These results highlight an important discrepancy between the methods of preparing Nafion dispersions and the use of simplified analysis techniques to describe Nafion morphology.

3.
J Phys Chem B ; 126(34): 6493-6499, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35976689

ABSTRACT

Experimental measurements and classical molecular dynamics (MD) simulations were carried out to study electrolytes containing CuCl2 and CuCl salts in mixtures of choline chloride (ChCl) and ethylene glycol (EG). The study focused on the concentration of 100 mM of both CuCl2 and CuCl with the ratio of ChCl/EG varied from 1:2, 1:3, 1:4, to 1:5. It was found that the Cu2+ and Cu+ have different solvation environments in their first solvation shell. Cu2+ is coordinated by both Cl- anions and EG molecules, whereas Cu+ is only solvated by EG. However, both Cu2+ and Cu+ show strong interactions with their second solvation shells, which include both Cl- anions and EG molecules. Considering both the first and second solvation shells, the concentrations of Cu2+ and Cu+ that have various coordination numbers in each solution were calculated and were found to correlate qualitatively with the exchange current density trends reported in previous experiments of Cu2+ reduction to Cu+. This finding makes a connection between atomic solvation structure observed in MD simulations and redox reaction kinetics measured in electrochemical experiments, thus revealing the significance of the solvation environment of reduced and oxidized species for electrokinetics in deep eutectic solvents.


Subject(s)
Choline , Ethylene Glycol , Anions/chemistry , Choline/chemistry , Ethylene Glycol/chemistry , Kinetics , Molecular Dynamics Simulation
4.
Chem Rev ; 121(3): 1232-1285, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33315380

ABSTRACT

Deep eutectic solvents (DESs) are an emerging class of mixtures characterized by significant depressions in melting points compared to those of the neat constituent components. These materials are promising for applications as inexpensive "designer" solvents exhibiting a host of tunable physicochemical properties. A detailed review of the current literature reveals the lack of predictive understanding of the microscopic mechanisms that govern the structure-property relationships in this class of solvents. Complex hydrogen bonding is postulated as the root cause of their melting point depressions and physicochemical properties; to understand these hydrogen bonded networks, it is imperative to study these systems as dynamic entities using both simulations and experiments. This review emphasizes recent research efforts in order to elucidate the next steps needed to develop a fundamental framework needed for a deeper understanding of DESs. It covers recent developments in DES research, frames outstanding scientific questions, and identifies promising research thrusts aligned with the advancement of the field toward predictive models and fundamental understanding of these solvents.

5.
J Phys Chem B ; 124(29): 6348-6357, 2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32589425

ABSTRACT

Solvation and transport properties of methly viologen dichloride (MVCl2) in 1:2, 1:4, and 1:6 molar mixtures of choline chloride (ChCl) and ethylene glycol (EG), including the deep eutectic solvent (DES) ethaline (1:2 mixture), were studied through the application of the hole theory to measured physical properties, cyclic voltammetry, and Raman spectroscopy. The ChCl:EG mixtures were compared to the ionic liquid (IL) 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl) imide ([PYR13][TFSI]) and choline bis(trifluoromethylsulfonyl)imide (ChTFSI) EG mixtures with the same molar ratios in order to understand the impact of the anion and hydrogen bond donor on solvation. Exchanging the chloride anion with TFSI is found to increase the fluidity of the solvent and promote stronger solute-solvent interactions. Raman spectroscopy suggests MVCl2 is strongly solvated by EG in ChTFSI:EG solutions and interstitially accommodated in holes in ChCl:EG mixtures and [PYR13][TFSI]. Complex solvents such as ILs and DESs are regarded as "designer solvents", and it is demonstrated here that the physical properties and solvation characteristics of these fluids strongly depend on the choice of the anion.

6.
Phys Chem Chem Phys ; 21(7): 3712-3720, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30334051

ABSTRACT

Differential capacitances of ionic liquids (ILs) butyl-trimethylammonium bis(trifluoromethyl sulfonyl)imide, [N1114][TFSI], methyl-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [PYR13][TFSI], and ethyl- methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMIM][TFSI], were measured by electrochemical impedance spectroscopy (EIS) over the entire electrochemical window determined by cyclic voltammetry (CV). Distinct fast charging and discharging process frequencies were obtained from the complex capacitance plane extracted from EIS. The onset frequencies of the charging processes were found to be independent of the bulk viscosity of the liquid. [N1114][TFSI] showed the largest relative increase in capacitance with respect to the point of zero charge with applied potential as a result of the 'crowding' effect. This is attributed to a larger degree of rotational freedom associated with the independent alkyl chains and the accessibility of larger potentials with the more stable cation. The largest overall capacitance among the ILs studied was observed for [PYR13][TFSI] at its anodic maximum which occurs due to 'overscreening'. The interpretation of the measured differential capacitance according to the extended mean field theory of Goodwin-Kornyshev [Z. A. Goodwin, et al., Electrochim. Acta., 2017, 225, 190-197] reveals that the ILs with increased ion associations demonstrate the largest relative increase in capacitance with potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...