Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nucl Med ; 45(11): 1811-5, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15534048

ABSTRACT

UNLABELLED: Identification of small nuclei in the brain by PET has been limited by the spatial resolution of conventional scanners. The new detector technology and advanced signal analysis of a high-resolution research tomograph (HRRT) has improved 3-dimensional spatial resolution to 2.2 mm at sufficient efficiency and permitted the quantification of tracer concentrations in small volumes. METHODS: In 9 healthy volunteers, cerebral glucose metabolism was investigated after intravenous injection of 370 MBq of (18)F-FDG, and regional cerebral metabolic rates for glucose (rCMRGlc) were determined in various structures of the brain identified on coregistered MR images using stereotactic and topographic anatomic information. RESULTS: rCMRGlc values (in mumol/100 g/min) were higher in the cerebral cortex (33.5 +/- 2.98), the basal ganglia (32.6 +/- 3.04 in the nucleus caudatus and 40.2 +/- 3.50 in the putamen), the thalamus (36.6 +/- 4.72), and the cerebellum (29.8 +/- 2.20) and were lower in the cerebral white matter (12.3 +/- 1.45) than those reported previously with conventional scanners. This resulted in an increased ratio of cortical values to white-matter values. Various nuclei in the basal frontal lobe (21.4 +/- 3.19 in the basal forebrain and 32.3 +/- 2.39 in the nucleus accumbens), the temporal lobe (22.2 +/- 1.74 in the corpus amygdalae), the hippocampus (25.7 +/- 2.11), the diencephalon (23.1 +/- 3.33 in the corpus geniculatum laterale, 20.2 +/- 2.87 in the corpus geniculatum mediale, and 25.2 +/- 3.29 in the nucleus subthalamicus), and the brain stem (24.4 +/- 2.47 in the colliculus superior, 31.4 +/- 3.63 in the colliculus inferior, 31.0 +/- 3.10 in the nucleus ruber, and 22.8 +/- 2.35 in the substantia nigra) could be identified, and the metabolic rate was assessed in these structures. The effect of improved spatial resolution on quantified metabolic rates could directly be demonstrated in a few cases investigated on scanners of different generations. CONCLUSION: The improved spatial resolution of the HRRT decreased partial-volume effects in the quantification of metabolic rates in the brain and increased the accuracy of rCMRGlc values in large structures. For the first time, this scanner has permitted the determination of metabolic rates in small nuclei that are involved in various neurodegenerative disorders.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Equipment Failure Analysis , Glucose/metabolism , Nerve Net/diagnostic imaging , Nerve Net/metabolism , Positron-Emission Tomography/instrumentation , Adult , Aged , Female , Fluorodeoxyglucose F18/pharmacokinetics , Humans , Image Enhancement/instrumentation , Male , Middle Aged , Radiopharmaceuticals/pharmacokinetics , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution
2.
J Chem Neuroanat ; 26(4): 293-9, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14729131

ABSTRACT

We considered clinical observations in patients with obsessive-compulsive- and anxiety-disorders, who underwent bilateral anterior capsulotomy, as well as anatomical and pathophysiological findings. Based on these considerations, we choose the shell region of the right nucleus accumbens as target for deep brain stimulation (DBS) in a pilot-series of four patients with severe obsessive-compulsive- and anxiety-disorders. Significant reduction in severity of symptoms has been achieved in three of four patients treated. Clinical results as well as a 15-O-H(2)O-PET study, perfomed in one patient during stimulation, speak in favour of the following hypothesis. As a central relay-structure between amygdala, basal ganglia, mesolimbic dopaminergic areas, mediodorsal thalamus and prefrontal cortex, the accumbens nucleus seems to play a modulatory role in information flow from the amygdaloid complex to the latter areas. If disturbed, imbalanced information flow from the amygdaloid complex could yield obsessive-compulsive- and anxiety-disorders, which can be counteracted by blocking the information flow within the shell region of the accumbens nucleus by deep brain stimulation.


Subject(s)
Anxiety Disorders/therapy , Electric Stimulation Therapy , Nucleus Accumbens/physiology , Obsessive-Compulsive Disorder/therapy , Animals , Functional Laterality , Humans , Magnetic Resonance Imaging , Pilot Projects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...